Loading…

Perturbation Methods for the Eigencharacteristics of Symmetric and Asymmetric Systems

Dynamic analysis for a vibratory system typically begins with an evaluation of its eigencharacteristics. However, when design changes are introduced, the eigensolutions of the system change and thus must be recomputed. In this paper, three different methods based on the eigenvalue perturbation theor...

Full description

Saved in:
Bibliographic Details
Published in:Shock and vibration 2018-01, Vol.2018 (2018), p.1-25
Main Authors: Cha, Philip D., Shin, Austin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dynamic analysis for a vibratory system typically begins with an evaluation of its eigencharacteristics. However, when design changes are introduced, the eigensolutions of the system change and thus must be recomputed. In this paper, three different methods based on the eigenvalue perturbation theory are introduced to analyze the effects of modifications without performing a potentially time-consuming and costly reanalysis. They will be referred to as the straightforward perturbation method, the incremental perturbation method, and the triple product method. In the straightforward perturbation method, the eigenvalue perturbation theory is used to formulate a first-order and a second-order approximation of the eigensolutions of symmetric and asymmetric systems. In the incremental perturbation method, the straightforward approach is extended to analyze systems with large perturbations using an iterative scheme. Finally, in the triple product method, the accuracy of the approximate eigenvalues is significantly improved by exploiting the orthogonality conditions of the perturbed eigenvectors. All three methods require only the eigensolutions of the nominal or unperturbed system, and in application, they involve simple matrix multiplications. Numerical experiments show that the proposed methods achieve accurate results for systems with and without damping and for systems with symmetric and asymmetric system matrices.
ISSN:1070-9622
1875-9203
DOI:10.1155/2018/8609138