Loading…
Method of inter-turn fault detection for next-generation smart transformers based on deep learning algorithm
In this study, an inter-turn fault diagnosis method is proposed based on deep learning algorithm. 12-channel data is obtained in MATLAB/Simulink as the time-domain monitoring signals and labelled with 16 different fault tags, including both primary and secondary voltage and current waveforms. An aut...
Saved in:
Published in: | High voltage 2019-12, Vol.4 (4), p.282-291 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, an inter-turn fault diagnosis method is proposed based on deep learning algorithm. 12-channel data is obtained in MATLAB/Simulink as the time-domain monitoring signals and labelled with 16 different fault tags, including both primary and secondary voltage and current waveforms. An auto-encoder is presented to classify the fault type of the abundant and comprehensive fault waveforms. The overall waveforms compose a two-dimension data matrix and the auto-encoder is trained to extract the features in the multi-channel waveforms. The selected features are convoluted with the original data, generating a one-dimensional vector as the input to the softmax classifier. Variables such as type, activation function and depth of auto-encoder, sparsity of sparse auto-encoder, number of features and pooling strategies are studied, which gives an intuitive process to train a proper learning model. The overall recognition accuracy reaches 99.5%. Signal characteristics such as channel selection, time span of the input signal and signal sampling frequency are studied to find the best solution for the inter-turn fault detection of the three-phase transformer. The proposed method under deep learning framework increases the accuracy and robustness in transformer fault diagnosis, indicating its potential and prospect in the next-generation smart transformers. |
---|---|
ISSN: | 2397-7264 2397-7264 |
DOI: | 10.1049/hve.2019.0067 |