Loading…
Variability in interseismic strain accumulation rate and style along the Altyn Tagh Fault
Major strike-slip faults that develop between strong and weaker regions are thought to focus along narrow shear zones at the rheological boundary. Here we present the InSAR-derived velocity field spanning almost the entire length of one such fault, the 1600 km-long Altyn Tagh Fault (ATF), and analys...
Saved in:
Published in: | Nature communications 2024-08, Vol.15 (1), p.6876-12, Article 6876 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Major strike-slip faults that develop between strong and weaker regions are thought to focus along narrow shear zones at the rheological boundary. Here we present the InSAR-derived velocity field spanning almost the entire length of one such fault, the 1600 km-long Altyn Tagh Fault (ATF), and analyse the strain distribution. We find that localisation of strain is actually variable, in contrast to other major strike-slip faults that show little variation, with strain concentrated at the fault for some sections and distributed over broad (>100 km) shear zones for others. Slip rate along the ATF is also variable, decreasing along the fault from 11.6 ± 1.6 mm/yr in the west to 7.2 ± 1.4 mm/yr in the central portion, before increasing again to 11.7 ± 0.9 mm/yr over the eastern portion. We show that the variable shear zone width may be linked to geological variability and the influence of heat flow, and the results imply that sub-parallel faults play an important role in the overall deformation field. This demonstrates the significance of accurately characterising strain rates over a broad region when assessing seismic hazard.
Major strike-slip faults that develop between strong and weaker regions are thought to focus along narrow shear zones at the rheological boundary. Here the authors present the InSAR-derived velocity field spanning almost the entire length of one such fault, the 1600 km-long Altyn Tagh Fault, and analyse the strain distribution. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-024-51116-z |