Loading…

Mechanism Correlating Microstructure and Wear Behaviour of Ti-6Al-4V Plate Produced Using Selective Laser Melting

In the present study, a dry sliding wear test has been conducted to analyse the wear rate of Ti-6Al-4V alloy specimens which were fabricated using selective laser melting and conventional methods. Microstructure, micro- and nanohardness, and wear behaviour of selective laser melting specimens were i...

Full description

Saved in:
Bibliographic Details
Published in:Metals (Basel ) 2023-03, Vol.13 (3), p.575
Main Authors: Jeyaprakash, Natarajan, Yang, Che-Hua, Prabu, Govindarajan, Radhika, Nachimuthu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present study, a dry sliding wear test has been conducted to analyse the wear rate of Ti-6Al-4V alloy specimens which were fabricated using selective laser melting and conventional methods. Microstructure, micro- and nanohardness, and wear behaviour of selective laser melting specimens were investigated and compared with commercially available conventionally fabricated Ti-6Al-4V specimens. The mechanism correlating microstructure and wear behaviour of conventional and selective laser melting based Ti-6Al-4V specimens have been explained. The microhardness of the selective laser melting specimen was improved by around 22.4% over the specimen from the conventional method. The selective laser melting specimen showed broadened peaks and an increase in intensity height greater than that of the conventional specimen due to the presence of the martensite phase. The selective laser melting specimen possessed 41.4% higher nanohardness than that of the conventional specimen. The selective laser melting specimen had a 62.1% lower wear rate when compared to that of the conventional specimen. The selective laser melting specimen exhibited 62.7% less coefficient of friction than that of the conventional specimen at a 50 N load with 1.2 m/s sliding velocities. The finer needle-like microstructures of the specimen produced using the selective laser melting process had higher wear resistance, as it had higher hardness than the conventional specimen.
ISSN:2075-4701
2075-4701
DOI:10.3390/met13030575