Loading…

Structural integrity of aging steel bridges by 3D laser scanning and convolutional neural networks

For steel bridges, corrosion has historically led to bridge failures, resulting in fatalities and injuries. To enhance public safety and prevent such incidents, authorities mandate in-situ evaluation and reporting of corroded members. The current inspection and evaluation protocol is characterized b...

Full description

Saved in:
Bibliographic Details
Published in:Communications engineering 2024-08, Vol.3 (1), p.106-14, Article 106
Main Authors: Tzortzinis, Georgios, Filippatos, Angelos, Wittig, Jan, Gude, Maik, Provost, Aidan, Ai, Chengbo, Gerasimidis, Simos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2818-9b84981516a57be6bfa642daee08f6f585108d688ad5413bbe92ff2dd58366243
container_end_page 14
container_issue 1
container_start_page 106
container_title Communications engineering
container_volume 3
creator Tzortzinis, Georgios
Filippatos, Angelos
Wittig, Jan
Gude, Maik
Provost, Aidan
Ai, Chengbo
Gerasimidis, Simos
description For steel bridges, corrosion has historically led to bridge failures, resulting in fatalities and injuries. To enhance public safety and prevent such incidents, authorities mandate in-situ evaluation and reporting of corroded members. The current inspection and evaluation protocol is characterized by intense labor, traffic delays, and poor capacity predictions. Here we combine full-scale experimental testing of a decommissioned girder, 3D laser scanning, and convolutional neural networks (CNNs) to introduce a continuous inspection and evaluation framework. Classification and regression CNNs are trained on a databank of 1,421 naturally inspired corrosion scenarios, generated computationally based on point clouds of three corroded girders collected in lab conditions. Results indicate low errors of up to 2.0% and 3.3%, respectively. The methodology is validated on eight real corroded ends and implemented for the evaluation of an in-service bridge. This framework promises significant advancements in assessing aging bridge infrastructure with higher accuracy and efficiency compared to analytical or semi-analytical approaches. Dr Georgios Tzortzinis and colleagues use a combination of experimental testing and 3D laser scanning to describe the corrosion profile of bridge girders. Their results demonstrate how laser scanners and convolutional neural networks can provide accurate predictions on the structural capacity of ageing steel bridges.
doi_str_mv 10.1038/s44172-024-00255-8
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_135afd55f0b840d6b8808aac03bea046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_135afd55f0b840d6b8808aac03bea046</doaj_id><sourcerecordid>3087352595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2818-9b84981516a57be6bfa642daee08f6f585108d688ad5413bbe92ff2dd58366243</originalsourceid><addsrcrecordid>eNp9kUtv1TAQRiMEolXpH2CBLLFhk-JHnEyWqDxaqRILYG2N43GUS65d7ITq_nvcm1IQC1a27DNnxv6q6qXgF4IreJubRnSy5rKpOZda1_CkOpWdErVSvX761_6kOs95xwvV9Q0HeF6dqJ73XHI4reyXJa3Dsiac2RQWGtO0HFj0DMcpjCwvRDOzaXIjZWYPTL1nM2ZKLA8Ywj2CwbEhhp9xXpcphuIJdNQFWu5i-p5fVM88zpnOH9az6tvHD18vr-qbz5-uL9_d1IMEAXVvoelBaNGi7iy11mPbSIdEHHzrNWjBwbUA6HQjlLXUS--lcxpU28pGnVXXm9dF3JnbNO0xHUzEyRwPYhoNpmUaZjJCafROa89LU-5aC8ABceDKEvKmLa43m-s2xR8r5cXspzzQPGOguGajOHRKS93rgr7-B93FNZV_2KhiK68qlNyoIcWcE_nHAQU394GaLVBTAjXHQA2UolcP6tXuyT2W_I6vAGoDcrkKI6U_vf-j_QU_dKqP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087046981</pqid></control><display><type>article</type><title>Structural integrity of aging steel bridges by 3D laser scanning and convolutional neural networks</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Tzortzinis, Georgios ; Filippatos, Angelos ; Wittig, Jan ; Gude, Maik ; Provost, Aidan ; Ai, Chengbo ; Gerasimidis, Simos</creator><creatorcontrib>Tzortzinis, Georgios ; Filippatos, Angelos ; Wittig, Jan ; Gude, Maik ; Provost, Aidan ; Ai, Chengbo ; Gerasimidis, Simos</creatorcontrib><description>For steel bridges, corrosion has historically led to bridge failures, resulting in fatalities and injuries. To enhance public safety and prevent such incidents, authorities mandate in-situ evaluation and reporting of corroded members. The current inspection and evaluation protocol is characterized by intense labor, traffic delays, and poor capacity predictions. Here we combine full-scale experimental testing of a decommissioned girder, 3D laser scanning, and convolutional neural networks (CNNs) to introduce a continuous inspection and evaluation framework. Classification and regression CNNs are trained on a databank of 1,421 naturally inspired corrosion scenarios, generated computationally based on point clouds of three corroded girders collected in lab conditions. Results indicate low errors of up to 2.0% and 3.3%, respectively. The methodology is validated on eight real corroded ends and implemented for the evaluation of an in-service bridge. This framework promises significant advancements in assessing aging bridge infrastructure with higher accuracy and efficiency compared to analytical or semi-analytical approaches. Dr Georgios Tzortzinis and colleagues use a combination of experimental testing and 3D laser scanning to describe the corrosion profile of bridge girders. Their results demonstrate how laser scanners and convolutional neural networks can provide accurate predictions on the structural capacity of ageing steel bridges.</description><identifier>ISSN: 2731-3395</identifier><identifier>EISSN: 2731-3395</identifier><identifier>DOI: 10.1038/s44172-024-00255-8</identifier><identifier>PMID: 39090208</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/986 ; 639/705/1042 ; Accuracy ; Aging (metallurgy) ; Algorithms ; Artificial neural networks ; Bridge failure ; Bridges ; Concrete ; Corrosion ; Corrosion mechanisms ; Corrosion tests ; Documentation ; Energy consumption ; Engineering ; Evaluation ; Girder bridges ; Girders ; Infrastructure ; Injury prevention ; Inspection ; Inspections ; Laser applications ; Lasers ; Load ; Machine learning ; Masonry ; Neural networks ; Public safety ; Scanners ; Shear strength ; Steel bridges ; Structural integrity ; Three dimensional models ; Traffic capacity ; Traffic delay ; Unmanned aerial vehicles</subject><ispartof>Communications engineering, 2024-08, Vol.3 (1), p.106-14, Article 106</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2818-9b84981516a57be6bfa642daee08f6f585108d688ad5413bbe92ff2dd58366243</cites><orcidid>0000-0002-3536-9348 ; 0000-0003-0311-1745 ; 0000-0003-3111-5217 ; 0000-0002-3489-4749 ; 0009-0001-5016-5570</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3087046981/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3087046981?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39090208$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tzortzinis, Georgios</creatorcontrib><creatorcontrib>Filippatos, Angelos</creatorcontrib><creatorcontrib>Wittig, Jan</creatorcontrib><creatorcontrib>Gude, Maik</creatorcontrib><creatorcontrib>Provost, Aidan</creatorcontrib><creatorcontrib>Ai, Chengbo</creatorcontrib><creatorcontrib>Gerasimidis, Simos</creatorcontrib><title>Structural integrity of aging steel bridges by 3D laser scanning and convolutional neural networks</title><title>Communications engineering</title><addtitle>Commun Eng</addtitle><addtitle>Commun Eng</addtitle><description>For steel bridges, corrosion has historically led to bridge failures, resulting in fatalities and injuries. To enhance public safety and prevent such incidents, authorities mandate in-situ evaluation and reporting of corroded members. The current inspection and evaluation protocol is characterized by intense labor, traffic delays, and poor capacity predictions. Here we combine full-scale experimental testing of a decommissioned girder, 3D laser scanning, and convolutional neural networks (CNNs) to introduce a continuous inspection and evaluation framework. Classification and regression CNNs are trained on a databank of 1,421 naturally inspired corrosion scenarios, generated computationally based on point clouds of three corroded girders collected in lab conditions. Results indicate low errors of up to 2.0% and 3.3%, respectively. The methodology is validated on eight real corroded ends and implemented for the evaluation of an in-service bridge. This framework promises significant advancements in assessing aging bridge infrastructure with higher accuracy and efficiency compared to analytical or semi-analytical approaches. Dr Georgios Tzortzinis and colleagues use a combination of experimental testing and 3D laser scanning to describe the corrosion profile of bridge girders. Their results demonstrate how laser scanners and convolutional neural networks can provide accurate predictions on the structural capacity of ageing steel bridges.</description><subject>639/166/986</subject><subject>639/705/1042</subject><subject>Accuracy</subject><subject>Aging (metallurgy)</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Bridge failure</subject><subject>Bridges</subject><subject>Concrete</subject><subject>Corrosion</subject><subject>Corrosion mechanisms</subject><subject>Corrosion tests</subject><subject>Documentation</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Evaluation</subject><subject>Girder bridges</subject><subject>Girders</subject><subject>Infrastructure</subject><subject>Injury prevention</subject><subject>Inspection</subject><subject>Inspections</subject><subject>Laser applications</subject><subject>Lasers</subject><subject>Load</subject><subject>Machine learning</subject><subject>Masonry</subject><subject>Neural networks</subject><subject>Public safety</subject><subject>Scanners</subject><subject>Shear strength</subject><subject>Steel bridges</subject><subject>Structural integrity</subject><subject>Three dimensional models</subject><subject>Traffic capacity</subject><subject>Traffic delay</subject><subject>Unmanned aerial vehicles</subject><issn>2731-3395</issn><issn>2731-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtv1TAQRiMEolXpH2CBLLFhk-JHnEyWqDxaqRILYG2N43GUS65d7ITq_nvcm1IQC1a27DNnxv6q6qXgF4IreJubRnSy5rKpOZda1_CkOpWdErVSvX761_6kOs95xwvV9Q0HeF6dqJ73XHI4reyXJa3Dsiac2RQWGtO0HFj0DMcpjCwvRDOzaXIjZWYPTL1nM2ZKLA8Ywj2CwbEhhp9xXpcphuIJdNQFWu5i-p5fVM88zpnOH9az6tvHD18vr-qbz5-uL9_d1IMEAXVvoelBaNGi7iy11mPbSIdEHHzrNWjBwbUA6HQjlLXUS--lcxpU28pGnVXXm9dF3JnbNO0xHUzEyRwPYhoNpmUaZjJCafROa89LU-5aC8ABceDKEvKmLa43m-s2xR8r5cXspzzQPGOguGajOHRKS93rgr7-B93FNZV_2KhiK68qlNyoIcWcE_nHAQU394GaLVBTAjXHQA2UolcP6tXuyT2W_I6vAGoDcrkKI6U_vf-j_QU_dKqP</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Tzortzinis, Georgios</creator><creator>Filippatos, Angelos</creator><creator>Wittig, Jan</creator><creator>Gude, Maik</creator><creator>Provost, Aidan</creator><creator>Ai, Chengbo</creator><creator>Gerasimidis, Simos</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3536-9348</orcidid><orcidid>https://orcid.org/0000-0003-0311-1745</orcidid><orcidid>https://orcid.org/0000-0003-3111-5217</orcidid><orcidid>https://orcid.org/0000-0002-3489-4749</orcidid><orcidid>https://orcid.org/0009-0001-5016-5570</orcidid></search><sort><creationdate>20240801</creationdate><title>Structural integrity of aging steel bridges by 3D laser scanning and convolutional neural networks</title><author>Tzortzinis, Georgios ; Filippatos, Angelos ; Wittig, Jan ; Gude, Maik ; Provost, Aidan ; Ai, Chengbo ; Gerasimidis, Simos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2818-9b84981516a57be6bfa642daee08f6f585108d688ad5413bbe92ff2dd58366243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/166/986</topic><topic>639/705/1042</topic><topic>Accuracy</topic><topic>Aging (metallurgy)</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Bridge failure</topic><topic>Bridges</topic><topic>Concrete</topic><topic>Corrosion</topic><topic>Corrosion mechanisms</topic><topic>Corrosion tests</topic><topic>Documentation</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Evaluation</topic><topic>Girder bridges</topic><topic>Girders</topic><topic>Infrastructure</topic><topic>Injury prevention</topic><topic>Inspection</topic><topic>Inspections</topic><topic>Laser applications</topic><topic>Lasers</topic><topic>Load</topic><topic>Machine learning</topic><topic>Masonry</topic><topic>Neural networks</topic><topic>Public safety</topic><topic>Scanners</topic><topic>Shear strength</topic><topic>Steel bridges</topic><topic>Structural integrity</topic><topic>Three dimensional models</topic><topic>Traffic capacity</topic><topic>Traffic delay</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tzortzinis, Georgios</creatorcontrib><creatorcontrib>Filippatos, Angelos</creatorcontrib><creatorcontrib>Wittig, Jan</creatorcontrib><creatorcontrib>Gude, Maik</creatorcontrib><creatorcontrib>Provost, Aidan</creatorcontrib><creatorcontrib>Ai, Chengbo</creatorcontrib><creatorcontrib>Gerasimidis, Simos</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Communications engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tzortzinis, Georgios</au><au>Filippatos, Angelos</au><au>Wittig, Jan</au><au>Gude, Maik</au><au>Provost, Aidan</au><au>Ai, Chengbo</au><au>Gerasimidis, Simos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural integrity of aging steel bridges by 3D laser scanning and convolutional neural networks</atitle><jtitle>Communications engineering</jtitle><stitle>Commun Eng</stitle><addtitle>Commun Eng</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>3</volume><issue>1</issue><spage>106</spage><epage>14</epage><pages>106-14</pages><artnum>106</artnum><issn>2731-3395</issn><eissn>2731-3395</eissn><abstract>For steel bridges, corrosion has historically led to bridge failures, resulting in fatalities and injuries. To enhance public safety and prevent such incidents, authorities mandate in-situ evaluation and reporting of corroded members. The current inspection and evaluation protocol is characterized by intense labor, traffic delays, and poor capacity predictions. Here we combine full-scale experimental testing of a decommissioned girder, 3D laser scanning, and convolutional neural networks (CNNs) to introduce a continuous inspection and evaluation framework. Classification and regression CNNs are trained on a databank of 1,421 naturally inspired corrosion scenarios, generated computationally based on point clouds of three corroded girders collected in lab conditions. Results indicate low errors of up to 2.0% and 3.3%, respectively. The methodology is validated on eight real corroded ends and implemented for the evaluation of an in-service bridge. This framework promises significant advancements in assessing aging bridge infrastructure with higher accuracy and efficiency compared to analytical or semi-analytical approaches. Dr Georgios Tzortzinis and colleagues use a combination of experimental testing and 3D laser scanning to describe the corrosion profile of bridge girders. Their results demonstrate how laser scanners and convolutional neural networks can provide accurate predictions on the structural capacity of ageing steel bridges.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39090208</pmid><doi>10.1038/s44172-024-00255-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3536-9348</orcidid><orcidid>https://orcid.org/0000-0003-0311-1745</orcidid><orcidid>https://orcid.org/0000-0003-3111-5217</orcidid><orcidid>https://orcid.org/0000-0002-3489-4749</orcidid><orcidid>https://orcid.org/0009-0001-5016-5570</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2731-3395
ispartof Communications engineering, 2024-08, Vol.3 (1), p.106-14, Article 106
issn 2731-3395
2731-3395
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_135afd55f0b840d6b8808aac03bea046
source Publicly Available Content (ProQuest); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/166/986
639/705/1042
Accuracy
Aging (metallurgy)
Algorithms
Artificial neural networks
Bridge failure
Bridges
Concrete
Corrosion
Corrosion mechanisms
Corrosion tests
Documentation
Energy consumption
Engineering
Evaluation
Girder bridges
Girders
Infrastructure
Injury prevention
Inspection
Inspections
Laser applications
Lasers
Load
Machine learning
Masonry
Neural networks
Public safety
Scanners
Shear strength
Steel bridges
Structural integrity
Three dimensional models
Traffic capacity
Traffic delay
Unmanned aerial vehicles
title Structural integrity of aging steel bridges by 3D laser scanning and convolutional neural networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A45%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20integrity%20of%20aging%20steel%20bridges%20by%203D%20laser%20scanning%20and%20convolutional%20neural%20networks&rft.jtitle=Communications%20engineering&rft.au=Tzortzinis,%20Georgios&rft.date=2024-08-01&rft.volume=3&rft.issue=1&rft.spage=106&rft.epage=14&rft.pages=106-14&rft.artnum=106&rft.issn=2731-3395&rft.eissn=2731-3395&rft_id=info:doi/10.1038/s44172-024-00255-8&rft_dat=%3Cproquest_doaj_%3E3087352595%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2818-9b84981516a57be6bfa642daee08f6f585108d688ad5413bbe92ff2dd58366243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3087046981&rft_id=info:pmid/39090208&rfr_iscdi=true