Loading…
Structural integrity of aging steel bridges by 3D laser scanning and convolutional neural networks
For steel bridges, corrosion has historically led to bridge failures, resulting in fatalities and injuries. To enhance public safety and prevent such incidents, authorities mandate in-situ evaluation and reporting of corroded members. The current inspection and evaluation protocol is characterized b...
Saved in:
Published in: | Communications engineering 2024-08, Vol.3 (1), p.106-14, Article 106 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2818-9b84981516a57be6bfa642daee08f6f585108d688ad5413bbe92ff2dd58366243 |
container_end_page | 14 |
container_issue | 1 |
container_start_page | 106 |
container_title | Communications engineering |
container_volume | 3 |
creator | Tzortzinis, Georgios Filippatos, Angelos Wittig, Jan Gude, Maik Provost, Aidan Ai, Chengbo Gerasimidis, Simos |
description | For steel bridges, corrosion has historically led to bridge failures, resulting in fatalities and injuries. To enhance public safety and prevent such incidents, authorities mandate in-situ evaluation and reporting of corroded members. The current inspection and evaluation protocol is characterized by intense labor, traffic delays, and poor capacity predictions. Here we combine full-scale experimental testing of a decommissioned girder, 3D laser scanning, and convolutional neural networks (CNNs) to introduce a continuous inspection and evaluation framework. Classification and regression CNNs are trained on a databank of 1,421 naturally inspired corrosion scenarios, generated computationally based on point clouds of three corroded girders collected in lab conditions. Results indicate low errors of up to 2.0% and 3.3%, respectively. The methodology is validated on eight real corroded ends and implemented for the evaluation of an in-service bridge. This framework promises significant advancements in assessing aging bridge infrastructure with higher accuracy and efficiency compared to analytical or semi-analytical approaches.
Dr Georgios Tzortzinis and colleagues use a combination of experimental testing and 3D laser scanning to describe the corrosion profile of bridge girders. Their results demonstrate how laser scanners and convolutional neural networks can provide accurate predictions on the structural capacity of ageing steel bridges. |
doi_str_mv | 10.1038/s44172-024-00255-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_135afd55f0b840d6b8808aac03bea046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_135afd55f0b840d6b8808aac03bea046</doaj_id><sourcerecordid>3087352595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2818-9b84981516a57be6bfa642daee08f6f585108d688ad5413bbe92ff2dd58366243</originalsourceid><addsrcrecordid>eNp9kUtv1TAQRiMEolXpH2CBLLFhk-JHnEyWqDxaqRILYG2N43GUS65d7ITq_nvcm1IQC1a27DNnxv6q6qXgF4IreJubRnSy5rKpOZda1_CkOpWdErVSvX761_6kOs95xwvV9Q0HeF6dqJ73XHI4reyXJa3Dsiac2RQWGtO0HFj0DMcpjCwvRDOzaXIjZWYPTL1nM2ZKLA8Ywj2CwbEhhp9xXpcphuIJdNQFWu5i-p5fVM88zpnOH9az6tvHD18vr-qbz5-uL9_d1IMEAXVvoelBaNGi7iy11mPbSIdEHHzrNWjBwbUA6HQjlLXUS--lcxpU28pGnVXXm9dF3JnbNO0xHUzEyRwPYhoNpmUaZjJCafROa89LU-5aC8ABceDKEvKmLa43m-s2xR8r5cXspzzQPGOguGajOHRKS93rgr7-B93FNZV_2KhiK68qlNyoIcWcE_nHAQU394GaLVBTAjXHQA2UolcP6tXuyT2W_I6vAGoDcrkKI6U_vf-j_QU_dKqP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087046981</pqid></control><display><type>article</type><title>Structural integrity of aging steel bridges by 3D laser scanning and convolutional neural networks</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Tzortzinis, Georgios ; Filippatos, Angelos ; Wittig, Jan ; Gude, Maik ; Provost, Aidan ; Ai, Chengbo ; Gerasimidis, Simos</creator><creatorcontrib>Tzortzinis, Georgios ; Filippatos, Angelos ; Wittig, Jan ; Gude, Maik ; Provost, Aidan ; Ai, Chengbo ; Gerasimidis, Simos</creatorcontrib><description>For steel bridges, corrosion has historically led to bridge failures, resulting in fatalities and injuries. To enhance public safety and prevent such incidents, authorities mandate in-situ evaluation and reporting of corroded members. The current inspection and evaluation protocol is characterized by intense labor, traffic delays, and poor capacity predictions. Here we combine full-scale experimental testing of a decommissioned girder, 3D laser scanning, and convolutional neural networks (CNNs) to introduce a continuous inspection and evaluation framework. Classification and regression CNNs are trained on a databank of 1,421 naturally inspired corrosion scenarios, generated computationally based on point clouds of three corroded girders collected in lab conditions. Results indicate low errors of up to 2.0% and 3.3%, respectively. The methodology is validated on eight real corroded ends and implemented for the evaluation of an in-service bridge. This framework promises significant advancements in assessing aging bridge infrastructure with higher accuracy and efficiency compared to analytical or semi-analytical approaches.
Dr Georgios Tzortzinis and colleagues use a combination of experimental testing and 3D laser scanning to describe the corrosion profile of bridge girders. Their results demonstrate how laser scanners and convolutional neural networks can provide accurate predictions on the structural capacity of ageing steel bridges.</description><identifier>ISSN: 2731-3395</identifier><identifier>EISSN: 2731-3395</identifier><identifier>DOI: 10.1038/s44172-024-00255-8</identifier><identifier>PMID: 39090208</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/986 ; 639/705/1042 ; Accuracy ; Aging (metallurgy) ; Algorithms ; Artificial neural networks ; Bridge failure ; Bridges ; Concrete ; Corrosion ; Corrosion mechanisms ; Corrosion tests ; Documentation ; Energy consumption ; Engineering ; Evaluation ; Girder bridges ; Girders ; Infrastructure ; Injury prevention ; Inspection ; Inspections ; Laser applications ; Lasers ; Load ; Machine learning ; Masonry ; Neural networks ; Public safety ; Scanners ; Shear strength ; Steel bridges ; Structural integrity ; Three dimensional models ; Traffic capacity ; Traffic delay ; Unmanned aerial vehicles</subject><ispartof>Communications engineering, 2024-08, Vol.3 (1), p.106-14, Article 106</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2818-9b84981516a57be6bfa642daee08f6f585108d688ad5413bbe92ff2dd58366243</cites><orcidid>0000-0002-3536-9348 ; 0000-0003-0311-1745 ; 0000-0003-3111-5217 ; 0000-0002-3489-4749 ; 0009-0001-5016-5570</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3087046981/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3087046981?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39090208$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tzortzinis, Georgios</creatorcontrib><creatorcontrib>Filippatos, Angelos</creatorcontrib><creatorcontrib>Wittig, Jan</creatorcontrib><creatorcontrib>Gude, Maik</creatorcontrib><creatorcontrib>Provost, Aidan</creatorcontrib><creatorcontrib>Ai, Chengbo</creatorcontrib><creatorcontrib>Gerasimidis, Simos</creatorcontrib><title>Structural integrity of aging steel bridges by 3D laser scanning and convolutional neural networks</title><title>Communications engineering</title><addtitle>Commun Eng</addtitle><addtitle>Commun Eng</addtitle><description>For steel bridges, corrosion has historically led to bridge failures, resulting in fatalities and injuries. To enhance public safety and prevent such incidents, authorities mandate in-situ evaluation and reporting of corroded members. The current inspection and evaluation protocol is characterized by intense labor, traffic delays, and poor capacity predictions. Here we combine full-scale experimental testing of a decommissioned girder, 3D laser scanning, and convolutional neural networks (CNNs) to introduce a continuous inspection and evaluation framework. Classification and regression CNNs are trained on a databank of 1,421 naturally inspired corrosion scenarios, generated computationally based on point clouds of three corroded girders collected in lab conditions. Results indicate low errors of up to 2.0% and 3.3%, respectively. The methodology is validated on eight real corroded ends and implemented for the evaluation of an in-service bridge. This framework promises significant advancements in assessing aging bridge infrastructure with higher accuracy and efficiency compared to analytical or semi-analytical approaches.
Dr Georgios Tzortzinis and colleagues use a combination of experimental testing and 3D laser scanning to describe the corrosion profile of bridge girders. Their results demonstrate how laser scanners and convolutional neural networks can provide accurate predictions on the structural capacity of ageing steel bridges.</description><subject>639/166/986</subject><subject>639/705/1042</subject><subject>Accuracy</subject><subject>Aging (metallurgy)</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Bridge failure</subject><subject>Bridges</subject><subject>Concrete</subject><subject>Corrosion</subject><subject>Corrosion mechanisms</subject><subject>Corrosion tests</subject><subject>Documentation</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Evaluation</subject><subject>Girder bridges</subject><subject>Girders</subject><subject>Infrastructure</subject><subject>Injury prevention</subject><subject>Inspection</subject><subject>Inspections</subject><subject>Laser applications</subject><subject>Lasers</subject><subject>Load</subject><subject>Machine learning</subject><subject>Masonry</subject><subject>Neural networks</subject><subject>Public safety</subject><subject>Scanners</subject><subject>Shear strength</subject><subject>Steel bridges</subject><subject>Structural integrity</subject><subject>Three dimensional models</subject><subject>Traffic capacity</subject><subject>Traffic delay</subject><subject>Unmanned aerial vehicles</subject><issn>2731-3395</issn><issn>2731-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtv1TAQRiMEolXpH2CBLLFhk-JHnEyWqDxaqRILYG2N43GUS65d7ITq_nvcm1IQC1a27DNnxv6q6qXgF4IreJubRnSy5rKpOZda1_CkOpWdErVSvX761_6kOs95xwvV9Q0HeF6dqJ73XHI4reyXJa3Dsiac2RQWGtO0HFj0DMcpjCwvRDOzaXIjZWYPTL1nM2ZKLA8Ywj2CwbEhhp9xXpcphuIJdNQFWu5i-p5fVM88zpnOH9az6tvHD18vr-qbz5-uL9_d1IMEAXVvoelBaNGi7iy11mPbSIdEHHzrNWjBwbUA6HQjlLXUS--lcxpU28pGnVXXm9dF3JnbNO0xHUzEyRwPYhoNpmUaZjJCafROa89LU-5aC8ABceDKEvKmLa43m-s2xR8r5cXspzzQPGOguGajOHRKS93rgr7-B93FNZV_2KhiK68qlNyoIcWcE_nHAQU394GaLVBTAjXHQA2UolcP6tXuyT2W_I6vAGoDcrkKI6U_vf-j_QU_dKqP</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Tzortzinis, Georgios</creator><creator>Filippatos, Angelos</creator><creator>Wittig, Jan</creator><creator>Gude, Maik</creator><creator>Provost, Aidan</creator><creator>Ai, Chengbo</creator><creator>Gerasimidis, Simos</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3536-9348</orcidid><orcidid>https://orcid.org/0000-0003-0311-1745</orcidid><orcidid>https://orcid.org/0000-0003-3111-5217</orcidid><orcidid>https://orcid.org/0000-0002-3489-4749</orcidid><orcidid>https://orcid.org/0009-0001-5016-5570</orcidid></search><sort><creationdate>20240801</creationdate><title>Structural integrity of aging steel bridges by 3D laser scanning and convolutional neural networks</title><author>Tzortzinis, Georgios ; Filippatos, Angelos ; Wittig, Jan ; Gude, Maik ; Provost, Aidan ; Ai, Chengbo ; Gerasimidis, Simos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2818-9b84981516a57be6bfa642daee08f6f585108d688ad5413bbe92ff2dd58366243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/166/986</topic><topic>639/705/1042</topic><topic>Accuracy</topic><topic>Aging (metallurgy)</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Bridge failure</topic><topic>Bridges</topic><topic>Concrete</topic><topic>Corrosion</topic><topic>Corrosion mechanisms</topic><topic>Corrosion tests</topic><topic>Documentation</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Evaluation</topic><topic>Girder bridges</topic><topic>Girders</topic><topic>Infrastructure</topic><topic>Injury prevention</topic><topic>Inspection</topic><topic>Inspections</topic><topic>Laser applications</topic><topic>Lasers</topic><topic>Load</topic><topic>Machine learning</topic><topic>Masonry</topic><topic>Neural networks</topic><topic>Public safety</topic><topic>Scanners</topic><topic>Shear strength</topic><topic>Steel bridges</topic><topic>Structural integrity</topic><topic>Three dimensional models</topic><topic>Traffic capacity</topic><topic>Traffic delay</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tzortzinis, Georgios</creatorcontrib><creatorcontrib>Filippatos, Angelos</creatorcontrib><creatorcontrib>Wittig, Jan</creatorcontrib><creatorcontrib>Gude, Maik</creatorcontrib><creatorcontrib>Provost, Aidan</creatorcontrib><creatorcontrib>Ai, Chengbo</creatorcontrib><creatorcontrib>Gerasimidis, Simos</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Communications engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tzortzinis, Georgios</au><au>Filippatos, Angelos</au><au>Wittig, Jan</au><au>Gude, Maik</au><au>Provost, Aidan</au><au>Ai, Chengbo</au><au>Gerasimidis, Simos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural integrity of aging steel bridges by 3D laser scanning and convolutional neural networks</atitle><jtitle>Communications engineering</jtitle><stitle>Commun Eng</stitle><addtitle>Commun Eng</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>3</volume><issue>1</issue><spage>106</spage><epage>14</epage><pages>106-14</pages><artnum>106</artnum><issn>2731-3395</issn><eissn>2731-3395</eissn><abstract>For steel bridges, corrosion has historically led to bridge failures, resulting in fatalities and injuries. To enhance public safety and prevent such incidents, authorities mandate in-situ evaluation and reporting of corroded members. The current inspection and evaluation protocol is characterized by intense labor, traffic delays, and poor capacity predictions. Here we combine full-scale experimental testing of a decommissioned girder, 3D laser scanning, and convolutional neural networks (CNNs) to introduce a continuous inspection and evaluation framework. Classification and regression CNNs are trained on a databank of 1,421 naturally inspired corrosion scenarios, generated computationally based on point clouds of three corroded girders collected in lab conditions. Results indicate low errors of up to 2.0% and 3.3%, respectively. The methodology is validated on eight real corroded ends and implemented for the evaluation of an in-service bridge. This framework promises significant advancements in assessing aging bridge infrastructure with higher accuracy and efficiency compared to analytical or semi-analytical approaches.
Dr Georgios Tzortzinis and colleagues use a combination of experimental testing and 3D laser scanning to describe the corrosion profile of bridge girders. Their results demonstrate how laser scanners and convolutional neural networks can provide accurate predictions on the structural capacity of ageing steel bridges.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39090208</pmid><doi>10.1038/s44172-024-00255-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3536-9348</orcidid><orcidid>https://orcid.org/0000-0003-0311-1745</orcidid><orcidid>https://orcid.org/0000-0003-3111-5217</orcidid><orcidid>https://orcid.org/0000-0002-3489-4749</orcidid><orcidid>https://orcid.org/0009-0001-5016-5570</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2731-3395 |
ispartof | Communications engineering, 2024-08, Vol.3 (1), p.106-14, Article 106 |
issn | 2731-3395 2731-3395 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_135afd55f0b840d6b8808aac03bea046 |
source | Publicly Available Content (ProQuest); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/166/986 639/705/1042 Accuracy Aging (metallurgy) Algorithms Artificial neural networks Bridge failure Bridges Concrete Corrosion Corrosion mechanisms Corrosion tests Documentation Energy consumption Engineering Evaluation Girder bridges Girders Infrastructure Injury prevention Inspection Inspections Laser applications Lasers Load Machine learning Masonry Neural networks Public safety Scanners Shear strength Steel bridges Structural integrity Three dimensional models Traffic capacity Traffic delay Unmanned aerial vehicles |
title | Structural integrity of aging steel bridges by 3D laser scanning and convolutional neural networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A45%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20integrity%20of%20aging%20steel%20bridges%20by%203D%20laser%20scanning%20and%20convolutional%20neural%20networks&rft.jtitle=Communications%20engineering&rft.au=Tzortzinis,%20Georgios&rft.date=2024-08-01&rft.volume=3&rft.issue=1&rft.spage=106&rft.epage=14&rft.pages=106-14&rft.artnum=106&rft.issn=2731-3395&rft.eissn=2731-3395&rft_id=info:doi/10.1038/s44172-024-00255-8&rft_dat=%3Cproquest_doaj_%3E3087352595%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2818-9b84981516a57be6bfa642daee08f6f585108d688ad5413bbe92ff2dd58366243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3087046981&rft_id=info:pmid/39090208&rfr_iscdi=true |