Loading…
Stretchable and anti-impact iontronic pressure sensor with an ultrabroad linear range for biophysical monitoring and deep learning-aided knee rehabilitation
Monitoring biophysical signals such as body or organ movements and other physical phenomena is necessary for patient rehabilitation. However, stretchable flexible pressure sensors with high sensitivity and a broad range that can meet these requirements are still lacking. Herein, we successfully moni...
Saved in:
Published in: | Microsystems & nanoengineering 2021-11, Vol.7 (1), p.92-92, Article 92 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Monitoring biophysical signals such as body or organ movements and other physical phenomena is necessary for patient rehabilitation. However, stretchable flexible pressure sensors with high sensitivity and a broad range that can meet these requirements are still lacking. Herein, we successfully monitored various vital biophysical features and implemented in-sensor dynamic deep learning for knee rehabilitation using an ultrabroad linear range and high-sensitivity stretchable iontronic pressure sensor (SIPS). We optimized the topological structure and material composition of the electrode to build a fully stretching on-skin sensor. The high sensitivity (12.43 kPa
−1
), ultrabroad linear sensing range (1 MPa), high pressure resolution (6.4 Pa), long-term durability (no decay after 12000 cycles), and excellent stretchability (up to 20%) allow the sensor to maintain operating stability, even in emergency cases with a high sudden impact force (near 1 MPa) applied to the sensor. As a practical demonstration, the SIPS can positively track biophysical signals such as pulse waves, muscle movements, and plantar pressure. Importantly, with the help of a neuro-inspired fully convolutional network algorithm, the SIPS can accurately predict knee joint postures for better rehabilitation after orthopedic surgery. Our SIPS has potential as a promising candidate for wearable electronics and artificial intelligent medical engineering owing to its unique high signal-to-noise ratio and ultrabroad linear range.
An ultrabroad-linear range (1 MPa) iontronic pressure sensor with superior sensitivity (12.43 kPa
-1
) and stretchability (up to 20%) was proposed for biophysical monitoring and deep learning-based knee-rehabilitation training. |
---|---|
ISSN: | 2055-7434 2096-1030 2055-7434 |
DOI: | 10.1038/s41378-021-00318-2 |