Loading…

Acute morphological and physiological effects of lead in the neotropical fish Prochilodus lineatus

The present study investigated lead effects on gill morphology, hematocrit, blood sodium, glucose, lipids, protein, and cholesterol of Prochilodus lineatus exposed to two sublethal lead concentrations for 96 h. Preliminary series of short-term static toxicity tests were run to determine LC50 (96 h)...

Full description

Saved in:
Bibliographic Details
Published in:Brazilian journal of biology 2004-11, Vol.64 (4), p.797-807
Main Authors: Martinez, C B R, Nagae, M Y, Zaia, C T B V, Zaia, D A M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present study investigated lead effects on gill morphology, hematocrit, blood sodium, glucose, lipids, protein, and cholesterol of Prochilodus lineatus exposed to two sublethal lead concentrations for 96 h. Preliminary series of short-term static toxicity tests were run to determine LC50 (96 h) of lead in P. lineatus, which was 95 mg Pb.L-1. Therefore, lead concentrations tested in the sublethal experiments were 24 and 71 mg Pb.L-1, which correspond to 25% and 75% of the LC50 (96 h), respectively. Gills of P. lineatus exposed to both lead concentrations during 96 h presented a higher occurrence of histopathological lesions such as epithelial lifting, hyperplasia, and lamellar aneurism. P. lineatus did not show significant alterations in hematocrit during exposure to both lead concentrations. Fish exposed to the highest lead concentration showed a significant decrease in Na+ plasma concentration after 48 h, possibly reflecting a sodium influx rate decrease. P. lineatus exposed to both lead concentrations presented a "classical general adaptation syndrome to stress", as hyperglycemia associated with lowered lipids and proteins was reported. Stress-response magnitude was dose-dependent. While the response to the lowest lead concentration might represent adaptation, the highest concentration seems to characterize exhaustion.
ISSN:1519-6984
1678-4375
1519-6984
DOI:10.1590/s1519-69842004000500009