Loading…
Addressing Social Inequality and Improper Water Distribution in Cities: A Case Study of Karachi, Pakistan
Inhabited by almost 20 million people, Karachi, also known as the “city of lights”, houses almost 60 percent of the industries in Pakistan and is considered as the financial and industrial center of the country. The city contributes almost 12–15 percent to the gross domestic product (GDP), showing i...
Saved in:
Published in: | Land (Basel) 2021-11, Vol.10 (11), p.1278 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Inhabited by almost 20 million people, Karachi, also known as the “city of lights”, houses almost 60 percent of the industries in Pakistan and is considered as the financial and industrial center of the country. The city contributes almost 12–15 percent to the gross domestic product (GDP), showing its significance in Pakistan’s economy. Unfortunately, with the increase in population, the city is facing a serious shortage of water supply. The current allocation of water among the city’s districts is not equitable, which has caused water scarcity and even riots in some areas. Surface water and ground water are the two primary sources of water supply in the city. The water supply provided by Karachi Water and Sewerage Board (KWSB) is approximately 650 million gallons per day (MGD) against a demand of 480–866 million gallons per day (MGD), resulting in a serious shortfall. Keeping a holistic view in mind, this paper focuses specifically on proposing measures to address the gap in proposing concrete solutions to manage Karachi’s increasing water woes. It also proposes a water allocation mechanism and uses Nash bargaining theory to address the inefficient and unequal water distribution. Results indicate that our suggested policies and water allocation mechanism have the potential to simultaneously resolve the supply–demand mismatch and water shortage problems of the city. |
---|---|
ISSN: | 2073-445X 2073-445X |
DOI: | 10.3390/land10111278 |