Loading…
Chemotactic network responses to live bacteria show independence of phagocytosis from chemoreceptor sensing
Aspects of innate immunity derive from characteristics inherent to phagocytes, including chemotaxis toward and engulfment of unicellular organisms or cell debris. Ligand chemotaxis has been biochemically investigated using mammalian and model systems, but precision of chemotaxis towards ligands bein...
Saved in:
Published in: | eLife 2017-05, Vol.6 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c506t-284037aa1e5521cbee3c841a8dfb2c83c3bb544faa3ce8b8eb1abd2c16e0f7a13 |
---|---|
cites | cdi_FETCH-LOGICAL-c506t-284037aa1e5521cbee3c841a8dfb2c83c3bb544faa3ce8b8eb1abd2c16e0f7a13 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | eLife |
container_volume | 6 |
creator | Meena, Netra Pal Kimmel, Alan R |
description | Aspects of innate immunity derive from characteristics inherent to phagocytes, including chemotaxis toward and engulfment of unicellular organisms or cell debris. Ligand chemotaxis has been biochemically investigated using mammalian and model systems, but precision of chemotaxis towards ligands being actively secreted by live bacteria is not well studied, nor has there been systematic analyses of interrelationships between chemotaxis and phagocytosis. The genetic/molecular model
and mammalian phagocytes share mechanistic pathways for chemotaxis and phagocytosis;
chemotax toward bacteria and phagocytose them as food sources. We quantified
chemotaxis towards live gram positive and gram negative bacteria and demonstrate high sensitivity to multiple bacterially-secreted chemoattractants. Additive/competitive assays indicate that intracellular signaling-networks for multiple ligands utilize independent upstream adaptive mechanisms, but common downstream targets, thus amplifying detection at low signal propagation, but strengthening discrimination of multiple inputs. Finally, analyses of signaling-networks for chemotaxis and phagocytosis indicate that chemoattractant receptor-signaling is not essential for bacterial phagocytosis. |
doi_str_mv | 10.7554/eLife.24627 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_174f1ed9efda4790bf6d6a0e7414ef66</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A495874984</galeid><doaj_id>oai_doaj_org_article_174f1ed9efda4790bf6d6a0e7414ef66</doaj_id><sourcerecordid>A495874984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-284037aa1e5521cbee3c841a8dfb2c83c3bb544faa3ce8b8eb1abd2c16e0f7a13</originalsourceid><addsrcrecordid>eNptkltrHCEUgIfS0oQ0T30vQl9awm7V0RnnpRCWXhYWCr1A38RxjrNuZnSqbtL8-7i7aZotVVDR73xyDqcoXhI8rzln72BlDcwpq2j9pDilmOMZFuzn00fnk-I8xg3Oo2ZCkOZ5cUIFZ4QIelpcLdYw-qR0sho5SDc-XKEAcfIuQkTJo8FeA2ozAMEqFNf-BlnXwQR5cRqQN2haq97r2-SjjcgEPyK9swbQMCUfUAQXretfFM-MGiKc3-9nxY-PH74vPs9WXz4tF5ermea4SjMqGC5rpQhwToluAUotGFGiMy3VotRl23LGjFKlBtEKaIlqO6pJBdjUipRnxfLg7bzayCnYUYVb6ZWV-wsfeqlCzncASWpmCHQNmE6xusGtqbpKYagZYWCqKrveH1zTth2h0-BSUMOR9PjF2bXs_bXkrK4YFVnw5l4Q_K8txCRHGzUMg3Lgt1GSBlMmaElwRl__g278NrhcqkxxWpecN81fqlc5AeuMz__qnVResoaLmjWCZWr-HyrPDkarvQNj8_1RwNujgMwk-J16tY1RLr99PWYvDqwOPsYA5qEeBMtdW8p9W8p9W2b61eMSPrB_mrC8A96_36s</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952735599</pqid></control><display><type>article</type><title>Chemotactic network responses to live bacteria show independence of phagocytosis from chemoreceptor sensing</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Meena, Netra Pal ; Kimmel, Alan R</creator><creatorcontrib>Meena, Netra Pal ; Kimmel, Alan R</creatorcontrib><description>Aspects of innate immunity derive from characteristics inherent to phagocytes, including chemotaxis toward and engulfment of unicellular organisms or cell debris. Ligand chemotaxis has been biochemically investigated using mammalian and model systems, but precision of chemotaxis towards ligands being actively secreted by live bacteria is not well studied, nor has there been systematic analyses of interrelationships between chemotaxis and phagocytosis. The genetic/molecular model
and mammalian phagocytes share mechanistic pathways for chemotaxis and phagocytosis;
chemotax toward bacteria and phagocytose them as food sources. We quantified
chemotaxis towards live gram positive and gram negative bacteria and demonstrate high sensitivity to multiple bacterially-secreted chemoattractants. Additive/competitive assays indicate that intracellular signaling-networks for multiple ligands utilize independent upstream adaptive mechanisms, but common downstream targets, thus amplifying detection at low signal propagation, but strengthening discrimination of multiple inputs. Finally, analyses of signaling-networks for chemotaxis and phagocytosis indicate that chemoattractant receptor-signaling is not essential for bacterial phagocytosis.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.24627</identifier><identifier>PMID: 28541182</identifier><language>eng</language><publisher>England: eLife Science Publications, Ltd</publisher><subject>Bacteria ; Cell adhesion & migration ; Cell Biology ; Chemoreceptors ; Chemotactic factors ; Chemotactic Factors - metabolism ; Chemotaxis ; Dictyostelium - drug effects ; Dictyostelium - physiology ; Food sources ; Gram-negative bacteria ; Gram-Negative Bacteria - metabolism ; Gram-Positive Bacteria - metabolism ; Innate immunity ; Intracellular signalling ; Ligands ; macrophages ; Microbial colonies ; Microbiology and Infectious Disease ; Microscopy ; Observations ; Phagocytes ; Phagocytosis ; Physiological aspects ; Signal Transduction ; Standard deviation ; Vitamin B</subject><ispartof>eLife, 2017-05, Vol.6</ispartof><rights>COPYRIGHT 2017 eLife Science Publications, Ltd.</rights><rights>2017. This work is licensed under the Creative Commons Public Domain Dedication ( https://creativecommons.org/publicdomain/zero/1.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-284037aa1e5521cbee3c841a8dfb2c83c3bb544faa3ce8b8eb1abd2c16e0f7a13</citedby><cites>FETCH-LOGICAL-c506t-284037aa1e5521cbee3c841a8dfb2c83c3bb544faa3ce8b8eb1abd2c16e0f7a13</cites><orcidid>0000-0002-0533-1939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1952735599/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1952735599?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28541182$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meena, Netra Pal</creatorcontrib><creatorcontrib>Kimmel, Alan R</creatorcontrib><title>Chemotactic network responses to live bacteria show independence of phagocytosis from chemoreceptor sensing</title><title>eLife</title><addtitle>Elife</addtitle><description>Aspects of innate immunity derive from characteristics inherent to phagocytes, including chemotaxis toward and engulfment of unicellular organisms or cell debris. Ligand chemotaxis has been biochemically investigated using mammalian and model systems, but precision of chemotaxis towards ligands being actively secreted by live bacteria is not well studied, nor has there been systematic analyses of interrelationships between chemotaxis and phagocytosis. The genetic/molecular model
and mammalian phagocytes share mechanistic pathways for chemotaxis and phagocytosis;
chemotax toward bacteria and phagocytose them as food sources. We quantified
chemotaxis towards live gram positive and gram negative bacteria and demonstrate high sensitivity to multiple bacterially-secreted chemoattractants. Additive/competitive assays indicate that intracellular signaling-networks for multiple ligands utilize independent upstream adaptive mechanisms, but common downstream targets, thus amplifying detection at low signal propagation, but strengthening discrimination of multiple inputs. Finally, analyses of signaling-networks for chemotaxis and phagocytosis indicate that chemoattractant receptor-signaling is not essential for bacterial phagocytosis.</description><subject>Bacteria</subject><subject>Cell adhesion & migration</subject><subject>Cell Biology</subject><subject>Chemoreceptors</subject><subject>Chemotactic factors</subject><subject>Chemotactic Factors - metabolism</subject><subject>Chemotaxis</subject><subject>Dictyostelium - drug effects</subject><subject>Dictyostelium - physiology</subject><subject>Food sources</subject><subject>Gram-negative bacteria</subject><subject>Gram-Negative Bacteria - metabolism</subject><subject>Gram-Positive Bacteria - metabolism</subject><subject>Innate immunity</subject><subject>Intracellular signalling</subject><subject>Ligands</subject><subject>macrophages</subject><subject>Microbial colonies</subject><subject>Microbiology and Infectious Disease</subject><subject>Microscopy</subject><subject>Observations</subject><subject>Phagocytes</subject><subject>Phagocytosis</subject><subject>Physiological aspects</subject><subject>Signal Transduction</subject><subject>Standard deviation</subject><subject>Vitamin B</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkltrHCEUgIfS0oQ0T30vQl9awm7V0RnnpRCWXhYWCr1A38RxjrNuZnSqbtL8-7i7aZotVVDR73xyDqcoXhI8rzln72BlDcwpq2j9pDilmOMZFuzn00fnk-I8xg3Oo2ZCkOZ5cUIFZ4QIelpcLdYw-qR0sho5SDc-XKEAcfIuQkTJo8FeA2ozAMEqFNf-BlnXwQR5cRqQN2haq97r2-SjjcgEPyK9swbQMCUfUAQXretfFM-MGiKc3-9nxY-PH74vPs9WXz4tF5ermea4SjMqGC5rpQhwToluAUotGFGiMy3VotRl23LGjFKlBtEKaIlqO6pJBdjUipRnxfLg7bzayCnYUYVb6ZWV-wsfeqlCzncASWpmCHQNmE6xusGtqbpKYagZYWCqKrveH1zTth2h0-BSUMOR9PjF2bXs_bXkrK4YFVnw5l4Q_K8txCRHGzUMg3Lgt1GSBlMmaElwRl__g278NrhcqkxxWpecN81fqlc5AeuMz__qnVResoaLmjWCZWr-HyrPDkarvQNj8_1RwNujgMwk-J16tY1RLr99PWYvDqwOPsYA5qEeBMtdW8p9W8p9W2b61eMSPrB_mrC8A96_36s</recordid><startdate>20170525</startdate><enddate>20170525</enddate><creator>Meena, Netra Pal</creator><creator>Kimmel, Alan R</creator><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0533-1939</orcidid></search><sort><creationdate>20170525</creationdate><title>Chemotactic network responses to live bacteria show independence of phagocytosis from chemoreceptor sensing</title><author>Meena, Netra Pal ; Kimmel, Alan R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-284037aa1e5521cbee3c841a8dfb2c83c3bb544faa3ce8b8eb1abd2c16e0f7a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacteria</topic><topic>Cell adhesion & migration</topic><topic>Cell Biology</topic><topic>Chemoreceptors</topic><topic>Chemotactic factors</topic><topic>Chemotactic Factors - metabolism</topic><topic>Chemotaxis</topic><topic>Dictyostelium - drug effects</topic><topic>Dictyostelium - physiology</topic><topic>Food sources</topic><topic>Gram-negative bacteria</topic><topic>Gram-Negative Bacteria - metabolism</topic><topic>Gram-Positive Bacteria - metabolism</topic><topic>Innate immunity</topic><topic>Intracellular signalling</topic><topic>Ligands</topic><topic>macrophages</topic><topic>Microbial colonies</topic><topic>Microbiology and Infectious Disease</topic><topic>Microscopy</topic><topic>Observations</topic><topic>Phagocytes</topic><topic>Phagocytosis</topic><topic>Physiological aspects</topic><topic>Signal Transduction</topic><topic>Standard deviation</topic><topic>Vitamin B</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meena, Netra Pal</creatorcontrib><creatorcontrib>Kimmel, Alan R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meena, Netra Pal</au><au>Kimmel, Alan R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemotactic network responses to live bacteria show independence of phagocytosis from chemoreceptor sensing</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2017-05-25</date><risdate>2017</risdate><volume>6</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Aspects of innate immunity derive from characteristics inherent to phagocytes, including chemotaxis toward and engulfment of unicellular organisms or cell debris. Ligand chemotaxis has been biochemically investigated using mammalian and model systems, but precision of chemotaxis towards ligands being actively secreted by live bacteria is not well studied, nor has there been systematic analyses of interrelationships between chemotaxis and phagocytosis. The genetic/molecular model
and mammalian phagocytes share mechanistic pathways for chemotaxis and phagocytosis;
chemotax toward bacteria and phagocytose them as food sources. We quantified
chemotaxis towards live gram positive and gram negative bacteria and demonstrate high sensitivity to multiple bacterially-secreted chemoattractants. Additive/competitive assays indicate that intracellular signaling-networks for multiple ligands utilize independent upstream adaptive mechanisms, but common downstream targets, thus amplifying detection at low signal propagation, but strengthening discrimination of multiple inputs. Finally, analyses of signaling-networks for chemotaxis and phagocytosis indicate that chemoattractant receptor-signaling is not essential for bacterial phagocytosis.</abstract><cop>England</cop><pub>eLife Science Publications, Ltd</pub><pmid>28541182</pmid><doi>10.7554/eLife.24627</doi><orcidid>https://orcid.org/0000-0002-0533-1939</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-084X |
ispartof | eLife, 2017-05, Vol.6 |
issn | 2050-084X 2050-084X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_174f1ed9efda4790bf6d6a0e7414ef66 |
source | Publicly Available Content Database; PubMed Central |
subjects | Bacteria Cell adhesion & migration Cell Biology Chemoreceptors Chemotactic factors Chemotactic Factors - metabolism Chemotaxis Dictyostelium - drug effects Dictyostelium - physiology Food sources Gram-negative bacteria Gram-Negative Bacteria - metabolism Gram-Positive Bacteria - metabolism Innate immunity Intracellular signalling Ligands macrophages Microbial colonies Microbiology and Infectious Disease Microscopy Observations Phagocytes Phagocytosis Physiological aspects Signal Transduction Standard deviation Vitamin B |
title | Chemotactic network responses to live bacteria show independence of phagocytosis from chemoreceptor sensing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A13%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemotactic%20network%20responses%20to%20live%20bacteria%20show%20independence%20of%20phagocytosis%20from%20chemoreceptor%20sensing&rft.jtitle=eLife&rft.au=Meena,%20Netra%20Pal&rft.date=2017-05-25&rft.volume=6&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.24627&rft_dat=%3Cgale_doaj_%3EA495874984%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c506t-284037aa1e5521cbee3c841a8dfb2c83c3bb544faa3ce8b8eb1abd2c16e0f7a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1952735599&rft_id=info:pmid/28541182&rft_galeid=A495874984&rfr_iscdi=true |