Loading…

Chemotactic network responses to live bacteria show independence of phagocytosis from chemoreceptor sensing

Aspects of innate immunity derive from characteristics inherent to phagocytes, including chemotaxis toward and engulfment of unicellular organisms or cell debris. Ligand chemotaxis has been biochemically investigated using mammalian and model systems, but precision of chemotaxis towards ligands bein...

Full description

Saved in:
Bibliographic Details
Published in:eLife 2017-05, Vol.6
Main Authors: Meena, Netra Pal, Kimmel, Alan R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c506t-284037aa1e5521cbee3c841a8dfb2c83c3bb544faa3ce8b8eb1abd2c16e0f7a13
cites cdi_FETCH-LOGICAL-c506t-284037aa1e5521cbee3c841a8dfb2c83c3bb544faa3ce8b8eb1abd2c16e0f7a13
container_end_page
container_issue
container_start_page
container_title eLife
container_volume 6
creator Meena, Netra Pal
Kimmel, Alan R
description Aspects of innate immunity derive from characteristics inherent to phagocytes, including chemotaxis toward and engulfment of unicellular organisms or cell debris. Ligand chemotaxis has been biochemically investigated using mammalian and model systems, but precision of chemotaxis towards ligands being actively secreted by live bacteria is not well studied, nor has there been systematic analyses of interrelationships between chemotaxis and phagocytosis. The genetic/molecular model and mammalian phagocytes share mechanistic pathways for chemotaxis and phagocytosis; chemotax toward bacteria and phagocytose them as food sources. We quantified chemotaxis towards live gram positive and gram negative bacteria and demonstrate high sensitivity to multiple bacterially-secreted chemoattractants. Additive/competitive assays indicate that intracellular signaling-networks for multiple ligands utilize independent upstream adaptive mechanisms, but common downstream targets, thus amplifying detection at low signal propagation, but strengthening discrimination of multiple inputs. Finally, analyses of signaling-networks for chemotaxis and phagocytosis indicate that chemoattractant receptor-signaling is not essential for bacterial phagocytosis.
doi_str_mv 10.7554/eLife.24627
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_174f1ed9efda4790bf6d6a0e7414ef66</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A495874984</galeid><doaj_id>oai_doaj_org_article_174f1ed9efda4790bf6d6a0e7414ef66</doaj_id><sourcerecordid>A495874984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-284037aa1e5521cbee3c841a8dfb2c83c3bb544faa3ce8b8eb1abd2c16e0f7a13</originalsourceid><addsrcrecordid>eNptkltrHCEUgIfS0oQ0T30vQl9awm7V0RnnpRCWXhYWCr1A38RxjrNuZnSqbtL8-7i7aZotVVDR73xyDqcoXhI8rzln72BlDcwpq2j9pDilmOMZFuzn00fnk-I8xg3Oo2ZCkOZ5cUIFZ4QIelpcLdYw-qR0sho5SDc-XKEAcfIuQkTJo8FeA2ozAMEqFNf-BlnXwQR5cRqQN2haq97r2-SjjcgEPyK9swbQMCUfUAQXretfFM-MGiKc3-9nxY-PH74vPs9WXz4tF5ermea4SjMqGC5rpQhwToluAUotGFGiMy3VotRl23LGjFKlBtEKaIlqO6pJBdjUipRnxfLg7bzayCnYUYVb6ZWV-wsfeqlCzncASWpmCHQNmE6xusGtqbpKYagZYWCqKrveH1zTth2h0-BSUMOR9PjF2bXs_bXkrK4YFVnw5l4Q_K8txCRHGzUMg3Lgt1GSBlMmaElwRl__g278NrhcqkxxWpecN81fqlc5AeuMz__qnVResoaLmjWCZWr-HyrPDkarvQNj8_1RwNujgMwk-J16tY1RLr99PWYvDqwOPsYA5qEeBMtdW8p9W8p9W2b61eMSPrB_mrC8A96_36s</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952735599</pqid></control><display><type>article</type><title>Chemotactic network responses to live bacteria show independence of phagocytosis from chemoreceptor sensing</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Meena, Netra Pal ; Kimmel, Alan R</creator><creatorcontrib>Meena, Netra Pal ; Kimmel, Alan R</creatorcontrib><description>Aspects of innate immunity derive from characteristics inherent to phagocytes, including chemotaxis toward and engulfment of unicellular organisms or cell debris. Ligand chemotaxis has been biochemically investigated using mammalian and model systems, but precision of chemotaxis towards ligands being actively secreted by live bacteria is not well studied, nor has there been systematic analyses of interrelationships between chemotaxis and phagocytosis. The genetic/molecular model and mammalian phagocytes share mechanistic pathways for chemotaxis and phagocytosis; chemotax toward bacteria and phagocytose them as food sources. We quantified chemotaxis towards live gram positive and gram negative bacteria and demonstrate high sensitivity to multiple bacterially-secreted chemoattractants. Additive/competitive assays indicate that intracellular signaling-networks for multiple ligands utilize independent upstream adaptive mechanisms, but common downstream targets, thus amplifying detection at low signal propagation, but strengthening discrimination of multiple inputs. Finally, analyses of signaling-networks for chemotaxis and phagocytosis indicate that chemoattractant receptor-signaling is not essential for bacterial phagocytosis.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.24627</identifier><identifier>PMID: 28541182</identifier><language>eng</language><publisher>England: eLife Science Publications, Ltd</publisher><subject>Bacteria ; Cell adhesion &amp; migration ; Cell Biology ; Chemoreceptors ; Chemotactic factors ; Chemotactic Factors - metabolism ; Chemotaxis ; Dictyostelium - drug effects ; Dictyostelium - physiology ; Food sources ; Gram-negative bacteria ; Gram-Negative Bacteria - metabolism ; Gram-Positive Bacteria - metabolism ; Innate immunity ; Intracellular signalling ; Ligands ; macrophages ; Microbial colonies ; Microbiology and Infectious Disease ; Microscopy ; Observations ; Phagocytes ; Phagocytosis ; Physiological aspects ; Signal Transduction ; Standard deviation ; Vitamin B</subject><ispartof>eLife, 2017-05, Vol.6</ispartof><rights>COPYRIGHT 2017 eLife Science Publications, Ltd.</rights><rights>2017. This work is licensed under the Creative Commons Public Domain Dedication ( https://creativecommons.org/publicdomain/zero/1.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-284037aa1e5521cbee3c841a8dfb2c83c3bb544faa3ce8b8eb1abd2c16e0f7a13</citedby><cites>FETCH-LOGICAL-c506t-284037aa1e5521cbee3c841a8dfb2c83c3bb544faa3ce8b8eb1abd2c16e0f7a13</cites><orcidid>0000-0002-0533-1939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1952735599/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1952735599?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28541182$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meena, Netra Pal</creatorcontrib><creatorcontrib>Kimmel, Alan R</creatorcontrib><title>Chemotactic network responses to live bacteria show independence of phagocytosis from chemoreceptor sensing</title><title>eLife</title><addtitle>Elife</addtitle><description>Aspects of innate immunity derive from characteristics inherent to phagocytes, including chemotaxis toward and engulfment of unicellular organisms or cell debris. Ligand chemotaxis has been biochemically investigated using mammalian and model systems, but precision of chemotaxis towards ligands being actively secreted by live bacteria is not well studied, nor has there been systematic analyses of interrelationships between chemotaxis and phagocytosis. The genetic/molecular model and mammalian phagocytes share mechanistic pathways for chemotaxis and phagocytosis; chemotax toward bacteria and phagocytose them as food sources. We quantified chemotaxis towards live gram positive and gram negative bacteria and demonstrate high sensitivity to multiple bacterially-secreted chemoattractants. Additive/competitive assays indicate that intracellular signaling-networks for multiple ligands utilize independent upstream adaptive mechanisms, but common downstream targets, thus amplifying detection at low signal propagation, but strengthening discrimination of multiple inputs. Finally, analyses of signaling-networks for chemotaxis and phagocytosis indicate that chemoattractant receptor-signaling is not essential for bacterial phagocytosis.</description><subject>Bacteria</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Biology</subject><subject>Chemoreceptors</subject><subject>Chemotactic factors</subject><subject>Chemotactic Factors - metabolism</subject><subject>Chemotaxis</subject><subject>Dictyostelium - drug effects</subject><subject>Dictyostelium - physiology</subject><subject>Food sources</subject><subject>Gram-negative bacteria</subject><subject>Gram-Negative Bacteria - metabolism</subject><subject>Gram-Positive Bacteria - metabolism</subject><subject>Innate immunity</subject><subject>Intracellular signalling</subject><subject>Ligands</subject><subject>macrophages</subject><subject>Microbial colonies</subject><subject>Microbiology and Infectious Disease</subject><subject>Microscopy</subject><subject>Observations</subject><subject>Phagocytes</subject><subject>Phagocytosis</subject><subject>Physiological aspects</subject><subject>Signal Transduction</subject><subject>Standard deviation</subject><subject>Vitamin B</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkltrHCEUgIfS0oQ0T30vQl9awm7V0RnnpRCWXhYWCr1A38RxjrNuZnSqbtL8-7i7aZotVVDR73xyDqcoXhI8rzln72BlDcwpq2j9pDilmOMZFuzn00fnk-I8xg3Oo2ZCkOZ5cUIFZ4QIelpcLdYw-qR0sho5SDc-XKEAcfIuQkTJo8FeA2ozAMEqFNf-BlnXwQR5cRqQN2haq97r2-SjjcgEPyK9swbQMCUfUAQXretfFM-MGiKc3-9nxY-PH74vPs9WXz4tF5ermea4SjMqGC5rpQhwToluAUotGFGiMy3VotRl23LGjFKlBtEKaIlqO6pJBdjUipRnxfLg7bzayCnYUYVb6ZWV-wsfeqlCzncASWpmCHQNmE6xusGtqbpKYagZYWCqKrveH1zTth2h0-BSUMOR9PjF2bXs_bXkrK4YFVnw5l4Q_K8txCRHGzUMg3Lgt1GSBlMmaElwRl__g278NrhcqkxxWpecN81fqlc5AeuMz__qnVResoaLmjWCZWr-HyrPDkarvQNj8_1RwNujgMwk-J16tY1RLr99PWYvDqwOPsYA5qEeBMtdW8p9W8p9W2b61eMSPrB_mrC8A96_36s</recordid><startdate>20170525</startdate><enddate>20170525</enddate><creator>Meena, Netra Pal</creator><creator>Kimmel, Alan R</creator><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0533-1939</orcidid></search><sort><creationdate>20170525</creationdate><title>Chemotactic network responses to live bacteria show independence of phagocytosis from chemoreceptor sensing</title><author>Meena, Netra Pal ; Kimmel, Alan R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-284037aa1e5521cbee3c841a8dfb2c83c3bb544faa3ce8b8eb1abd2c16e0f7a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacteria</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Biology</topic><topic>Chemoreceptors</topic><topic>Chemotactic factors</topic><topic>Chemotactic Factors - metabolism</topic><topic>Chemotaxis</topic><topic>Dictyostelium - drug effects</topic><topic>Dictyostelium - physiology</topic><topic>Food sources</topic><topic>Gram-negative bacteria</topic><topic>Gram-Negative Bacteria - metabolism</topic><topic>Gram-Positive Bacteria - metabolism</topic><topic>Innate immunity</topic><topic>Intracellular signalling</topic><topic>Ligands</topic><topic>macrophages</topic><topic>Microbial colonies</topic><topic>Microbiology and Infectious Disease</topic><topic>Microscopy</topic><topic>Observations</topic><topic>Phagocytes</topic><topic>Phagocytosis</topic><topic>Physiological aspects</topic><topic>Signal Transduction</topic><topic>Standard deviation</topic><topic>Vitamin B</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meena, Netra Pal</creatorcontrib><creatorcontrib>Kimmel, Alan R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meena, Netra Pal</au><au>Kimmel, Alan R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemotactic network responses to live bacteria show independence of phagocytosis from chemoreceptor sensing</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2017-05-25</date><risdate>2017</risdate><volume>6</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Aspects of innate immunity derive from characteristics inherent to phagocytes, including chemotaxis toward and engulfment of unicellular organisms or cell debris. Ligand chemotaxis has been biochemically investigated using mammalian and model systems, but precision of chemotaxis towards ligands being actively secreted by live bacteria is not well studied, nor has there been systematic analyses of interrelationships between chemotaxis and phagocytosis. The genetic/molecular model and mammalian phagocytes share mechanistic pathways for chemotaxis and phagocytosis; chemotax toward bacteria and phagocytose them as food sources. We quantified chemotaxis towards live gram positive and gram negative bacteria and demonstrate high sensitivity to multiple bacterially-secreted chemoattractants. Additive/competitive assays indicate that intracellular signaling-networks for multiple ligands utilize independent upstream adaptive mechanisms, but common downstream targets, thus amplifying detection at low signal propagation, but strengthening discrimination of multiple inputs. Finally, analyses of signaling-networks for chemotaxis and phagocytosis indicate that chemoattractant receptor-signaling is not essential for bacterial phagocytosis.</abstract><cop>England</cop><pub>eLife Science Publications, Ltd</pub><pmid>28541182</pmid><doi>10.7554/eLife.24627</doi><orcidid>https://orcid.org/0000-0002-0533-1939</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-084X
ispartof eLife, 2017-05, Vol.6
issn 2050-084X
2050-084X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_174f1ed9efda4790bf6d6a0e7414ef66
source Publicly Available Content Database; PubMed Central
subjects Bacteria
Cell adhesion & migration
Cell Biology
Chemoreceptors
Chemotactic factors
Chemotactic Factors - metabolism
Chemotaxis
Dictyostelium - drug effects
Dictyostelium - physiology
Food sources
Gram-negative bacteria
Gram-Negative Bacteria - metabolism
Gram-Positive Bacteria - metabolism
Innate immunity
Intracellular signalling
Ligands
macrophages
Microbial colonies
Microbiology and Infectious Disease
Microscopy
Observations
Phagocytes
Phagocytosis
Physiological aspects
Signal Transduction
Standard deviation
Vitamin B
title Chemotactic network responses to live bacteria show independence of phagocytosis from chemoreceptor sensing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A13%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemotactic%20network%20responses%20to%20live%20bacteria%20show%20independence%20of%20phagocytosis%20from%20chemoreceptor%20sensing&rft.jtitle=eLife&rft.au=Meena,%20Netra%20Pal&rft.date=2017-05-25&rft.volume=6&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.24627&rft_dat=%3Cgale_doaj_%3EA495874984%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c506t-284037aa1e5521cbee3c841a8dfb2c83c3bb544faa3ce8b8eb1abd2c16e0f7a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1952735599&rft_id=info:pmid/28541182&rft_galeid=A495874984&rfr_iscdi=true