Loading…

Multi-Time-Scale Coordinated Operation of a Combined System with Wind-Solar-Thermal-Hydro Power and Battery Units

The grid connection of intermittent energy sources such as wind power and photovoltaic power generation brings new challenges for the economic and safe operation of renewable power systems. To address these challenges, a multi-time-scale active power coordinated operation method, consisting of day-a...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2019-09, Vol.9 (17), p.3574
Main Authors: Zhang, Dongying, Du, Ting, Yin, Hao, Xia, Shiwei, Zhang, Huiting
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The grid connection of intermittent energy sources such as wind power and photovoltaic power generation brings new challenges for the economic and safe operation of renewable power systems. To address these challenges, a multi-time-scale active power coordinated operation method, consisting of day-ahead scheduling, hour-level rolling corrective scheduling, and real-time corrective scheduling, is proposed for the combined operation of wind-photovoltaic-thermal-hydro power and battery (WPTHB) to handle renewable power fluctuations. In day-ahead scheduling, the optimal power outputs of thermal power units, hydro-pumped storage units, and batteries are solved with the purpose of minimizing the total power generation cost. In hour-level rolling corrective scheduling, the power output plan of thermal power units and pumped storage units is modified to minimize the correction cost based on the on-off state of thermal power units determined in day-ahead scheduling. In real-time corrective scheduling stage, the feedback correction and rolling optimization-based model predictive control algorithm is adopted to modify the power output of thermal power units, hydro-pumped storage units, and batteries optimized in hour-level rolling correction scheduling, so as to ensure the economy of the correction plan and the static security of system operation. Finally, simulation results demonstrated that the proposed method can accurately track system power fluctuations, and ensure the economic and security operation of a multi-energy-generation system.
ISSN:2076-3417
2076-3417
DOI:10.3390/app9173574