Loading…

Unraveling the energy storage mechanism in graphene-based nonaqueous electrochemical capacitors by gap-enhanced Raman spectroscopy

Graphene has been extensively utilized as an electrode material for nonaqueous electrochemical capacitors. However, a comprehensive understanding of the charging mechanism and ion arrangement at the graphene/electrolyte interface remain elusive. Herein, a gap-enhanced Raman spectroscopic strategy is...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2024-07, Vol.15 (1), p.5624-12, Article 5624
Main Authors: Yin, Xiao-Ting, You, En-Ming, Zhou, Ru-Yu, Zhu, Li-Hong, Wang, Wei-Wei, Li, Kai-Xuan, Wu, De-Yin, Gu, Yu, Li, Jian-Feng, Mao, Bing-Wei, Yan, Jia-Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Graphene has been extensively utilized as an electrode material for nonaqueous electrochemical capacitors. However, a comprehensive understanding of the charging mechanism and ion arrangement at the graphene/electrolyte interface remain elusive. Herein, a gap-enhanced Raman spectroscopic strategy is designed to characterize the dynamic interfacial process of graphene with an adjustable number of layers, which is based on synergistic enhancement of localized surface plasmons from shell-isolated nanoparticles and a metal substrate. By employing such a strategy combined with complementary characterization techniques, we study the potential-dependent configuration of adsorbed ions and capacitance curves for graphene based on the number of layers. As the number of layers increases, the properties of graphene transform from a metalloid nature to graphite-like behavior. The charging mechanism shifts from co-ion desorption in single-layer graphene to ion exchange domination in few-layer graphene. The increase in area specific capacitance from 64 to 145 µF cm – 2 is attributed to the influence on ion packing, thereby impacting the electrochemical performance. Furthermore, the potential-dependent coordination structure of lithium bis(fluorosulfonyl) imide in tetraglyme ([Li(G4)][FSI]) at graphene/electrolyte interface is revealed. This work adds to the understanding of graphene interfaces with distinct properties, offering insights for optimization of electrochemical capacitors. Graphene is widely used as an electrode material but the understanding of its interface with electrolyte remains elusive. Here, authors employ gap-enhanced Raman spectroscopy and find that the charging mechanism shifts from co-ion desorption to ion exchange as the number of graphene layers increase.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-49973-9