Loading…

Non-contrast computed tomography-based radiomics for staging of connective tissue disease-associated interstitial lung disease

Rationale and introductionIt is of significance to assess the severity and predict the mortality of patients with connective tissue disease-associated interstitial lung disease (CTD-ILD). In this double-center retrospective study, we developed and validated a radiomics nomogram for clinical manageme...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in immunology 2023-10, Vol.14, p.1213008-1213008
Main Authors: Qin, Songnan, Jiao, Bingxuan, Kang, Bing, Li, Haiou, Liu, Hongwu, Ji, Congshan, Yang, Shifeng, Yuan, Hongtao, Wang, Ximing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rationale and introductionIt is of significance to assess the severity and predict the mortality of patients with connective tissue disease-associated interstitial lung disease (CTD-ILD). In this double-center retrospective study, we developed and validated a radiomics nomogram for clinical management by using the ILD-GAP (gender, age, and pulmonary physiology) index system.Materials and methodsPatients with CTD-ILD were staged using the ILD-GAP index system. A clinical factor model was built by demographics and CT features, and a radiomics signature was developed using radiomics features extracted from CT images. Combined with the radiomics signature and independent clinical factors, a radiomics nomogram was constructed and evaluated by the area under the curve (AUC) from receiver operating characteristic (ROC) analyses. The models were externally validated in dataset 2 to evaluate the model generalization ability using ROC analysis.ResultsA total of 245 patients from two clinical centers (dataset 1, n = 202; dataset 2, n = 43) were screened. Pack-years of smoking, traction bronchiectasis, and nine radiomics features were used to build the radiomics nomogram, which showed favorable calibration and discrimination in the training cohort {AUC, 0.887 [95% confidence interval (CI): 0.827-0.940]}, the internal validation cohort [AUC, 0.885 (95% CI: 0.816-0.922)], and the external validation cohort [AUC, 0.85 (95% CI: 0.720-0.919)]. Decision curve analysis demonstrated that the nomogram outperformed the clinical factor model and radiomics signature in terms of clinical usefulness.ConclusionThe CT-based radiomics nomogram showed favorable efficacy in predicting individual ILD-GAP stages.
ISSN:1664-3224
1664-3224
DOI:10.3389/fimmu.2023.1213008