Loading…
Geometric Constants in Banach Spaces Related to the Inscribed Quadrilateral of Unit Balls
We introduce a new geometric constant Jin(X) based on a generalization of the parallelogram law, which is symmetric and related to the length of the inscribed quadrilateral side of the unit ball. We first investigate some basic properties of this new coefficient. Next, it is shown that, for a Banach...
Saved in:
Published in: | Symmetry (Basel) 2021-07, Vol.13 (7), p.1294 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce a new geometric constant Jin(X) based on a generalization of the parallelogram law, which is symmetric and related to the length of the inscribed quadrilateral side of the unit ball. We first investigate some basic properties of this new coefficient. Next, it is shown that, for a Banach space, Jin(X) becomes 16 if and only if the norm is induced by an inner product. Moreover, its properties and some relations between other well-known geometric constants are studied. Finally, a sufficient condition which implies normal structure is presented. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym13071294 |