Loading…
Machine-Learning-Based Classification Approaches toward Recognizing Slope Stability Failure
In this paper, the authors investigated the applicability of combining machine-learning-based models toward slope stability assessment. To do this, several well-known machine-learning-based methods, namely multiple linear regression (MLR), multi-layer perceptron (MLP), radial basis function regressi...
Saved in:
Published in: | Applied sciences 2019-11, Vol.9 (21), p.4638 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, the authors investigated the applicability of combining machine-learning-based models toward slope stability assessment. To do this, several well-known machine-learning-based methods, namely multiple linear regression (MLR), multi-layer perceptron (MLP), radial basis function regression (RBFR), improved support vector machine using sequential minimal optimization algorithm (SMO-SVM), lazy k-nearest neighbor (IBK), random forest (RF), and random tree (RT), were selected to evaluate the stability of a slope through estimating the factor of safety (FOS). In the following, a comparative classification was carried out based on the five stability categories. Based on the respective values of total scores (the summation of scores obtained for the training and testing stages) of 15, 35, 48, 15, 50, 60, and 57, acquired for MLR, MLP, RBFR, SMO-SVM, IBK, RF, and RT, respectively, it was concluded that RF outperformed other intelligent models. The results of statistical indexes also prove the excellent prediction from the optimized structure of the ANN and RF techniques. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app9214638 |