Loading…

Prion-associated cerebral amyloid angiopathy is not exacerbated by human phosphorylated tau aggregates in scrapie-infected mice expressing anchorless prion protein

Tau aggregates consisting of hyperphosphorylated tau fibrils are associated with many neurodegenerative diseases, including Alzheimer's disease, Pick's disease, frontotemporal dementia, and progressive supranuclear palsy. Tau may contribute to the pathogenesis of these diseases, collective...

Full description

Saved in:
Bibliographic Details
Published in:Neurobiology of disease 2020-10, Vol.144, p.105057-105057, Article 105057
Main Authors: Race, Brent, Williams, Katie, Striebel, James F., Chesebro, Bruce
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tau aggregates consisting of hyperphosphorylated tau fibrils are associated with many neurodegenerative diseases, including Alzheimer's disease, Pick's disease, frontotemporal dementia, and progressive supranuclear palsy. Tau may contribute to the pathogenesis of these diseases, collectively referred to as tauopathies. In human genetic prion diseases, tau aggregates are detected in association with amyloid plaques consisting of prion protein (PrP). However, the role of abnormal tau aggregates in PrP amyloid disease remains unclear. Previously we inoculated scrapie prions into transgenic mice expressing human tau, mouse tau, glycophosphatidylinositol (GPI) anchored PrP, and anchorless PrP. These mice developed both spongiform vacuolar pathology and PrP amyloid pathology, and human tau was detected near PrP amyloid plaques. However, the presence of human tau did not alter the disease tempo or prion-induced neuropathology. In the present study, we tested mice which more closely modeled familial human prion disease. These mice expressed human tau but lacked both mouse tau and GPI-anchored PrP. However, they did produce anchorless PrP, resulting in perivascular PrP amyloid plaques, i.e. cerebral amyloid angiopathy (CAA), without spongiform degeneration. Typical of PrP amyloid disease, the clinical course was very slow in this model. Nevertheless, the accumulation of aggregated, phosphorylated human tau and its association with PrP amyloid plaques failed to alter the timing or course of the clinical disease observed. These data suggest that human tau does not contribute to the pathogenesis of mouse PrP amyloid brain disease and raise the possibility that tau may also not be pathogenic in human PrP amyloid disease. •Human p-tau does not decrease survival in a mouse prion amyloid disease model.•Abnormal human p-tau localizes to prion protein amyloid plaques.•Human p-tau within amyloid plaques did not increase plaque number or size.•Human p-tau may not increase pathogenesis in prion amyloid diseases of humans.
ISSN:0969-9961
1095-953X
DOI:10.1016/j.nbd.2020.105057