Loading…
On singular p -Laplacian boundary value problems involving integral boundary conditions
We prove the existence of positive solutions for the $p$-Laplacian equations \[-(\phi (u^{\prime }))^{\prime }=\lambda f(t,u),\qquad t\in (0,1) \] with integral boundary conditions. Here $\lambda $ is a positive parameter, $\phi (s)=|s|^{p-2}s,p>1,\ f:(0,1)\times (0,\infty )\rightarrow \mathbb{R\...
Saved in:
Published in: | Electronic journal of qualitative theory of differential equations 2019-01, Vol.2019 (90), p.1-13 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove the existence of positive solutions for the $p$-Laplacian equations \[-(\phi (u^{\prime }))^{\prime }=\lambda f(t,u),\qquad t\in (0,1) \] with integral boundary conditions. Here $\lambda $ is a positive parameter, $\phi (s)=|s|^{p-2}s,p>1,\ f:(0,1)\times (0,\infty )\rightarrow \mathbb{R\ }$ is $p$-superlinear or $p$-sublinear at $\infty $ and is allowed be singular at $t=0,1$ and $u=0.$ |
---|---|
ISSN: | 1417-3875 1417-3875 |
DOI: | 10.14232/ejqtde.2019.1.90 |