Loading…

Wide Distribution of Phage That Infect Freshwater SAR11 Bacteria

Fonsibacter represents a significant microbial group of freshwater ecosystems. Although the genomic and metabolic features of these bacteria have been well studied, no phage infecting them has been reported. In this study, we reconstructed complete genomes of Fonsibacter and infecting phage and reve...

Full description

Saved in:
Bibliographic Details
Published in:mSystems 2019-10, Vol.4 (5)
Main Authors: Chen, Lin-Xing, Zhao, Yanlin, McMahon, Katherine D., Mori, Jiro F., Jessen, Gerdhard L., Nelson, Tara Colenbrander, Warren, Lesley A., Banfield, Jillian F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fonsibacter represents a significant microbial group of freshwater ecosystems. Although the genomic and metabolic features of these bacteria have been well studied, no phage infecting them has been reported. In this study, we reconstructed complete genomes of Fonsibacter and infecting phage and revealed their close relatedness to the phage infecting marine SAR11 members. Also, we illustrated that phage that infect Fonsibacter are widely distributed in freshwater habitats. In summary, the results contribute new insights into the ecology and evolution of Fonsibacter and phage. Fonsibacter (LD12 subclade) is among the most abundant bacterioplankton in freshwater ecosystems. These bacteria belong to the order Pelagibacterales (SAR11) and are related to Pelagibacter (marine SAR11), which dominates many marine habitats. Although a few Pelagibacter phage (Pelagiphage) have been described, no phage that infect Fonsibacter have been reported. In this study, we describe two groups of Podoviridae phage that infect Fonsibacter . A complete Fonsibacter genome containing a prophage was reconstructed from metagenomic data. A circularized and complete genome related to the prophage, referred to as uv-Fonsiphage-EPL (lysogenic strategy), shows high similarity to marine Pelagiphage HTVC025P. Additionally, we reconstructed three complete genomes and one draft genome of phage related to marine Pelagiphage HTVC010P and predicted a lytic strategy. The similarity in codon usage and cooccurrence patterns of HTVC010P-related phage and Fonsibacter suggested that these phage infect Fonsibacter . Similar phage were detected in Lake Mendota, Wisconsin, where Fonsibacter is also present. A search of related phage revealed the worldwide distribution of some genotypes in freshwater ecosystems, suggesting their substantial role in shaping indigenous microbial assemblages and influence on biogeochemical cycling. However, the uv-Fonsiphage-EPL and one group of HTVC010P-related phage have a more limited distribution in freshwater ecosystems. Overall, the findings provide insights into the genomic features of phage that infect Fonsibacter and expand understanding of the ecology and evolution of these important bacteria. IMPORTANCE Fonsibacter represents a significant microbial group of freshwater ecosystems. Although the genomic and metabolic features of these bacteria have been well studied, no phage infecting them has been reported. In this study, we reconstructed complete genomes of Fonsib
ISSN:2379-5077
2379-5077
DOI:10.1128/mSystems.00410-19