Loading…

EDM of D2 Steel: Performance Comparison of EDM Die Sinking Electrode Designs

Electric discharge machining (EDM) of tool steel (D2 grade) has been performed using different tool designs to produce through-holes. Machining performance has been gauged with reference to machining time, hole taper angle, overcut, and surface roughness. Inaccuracies and slow machining rate are con...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2020-11, Vol.10 (21), p.7411
Main Authors: Rafaqat, Madiha, Mufti, Nadeem Ahmad, Ahmed, Naveed, Alahmari, Abdulrahman M., Hussain, Amjad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electric discharge machining (EDM) of tool steel (D2 grade) has been performed using different tool designs to produce through-holes. Machining performance has been gauged with reference to machining time, hole taper angle, overcut, and surface roughness. Inaccuracies and slow machining rate are considered as the most common limitations of the electric discharge machining (die-sinking). Traditionally, a cylindrical tool is used to form circular holes through EDM. In this study, the hole formation is carried out by changing the tool design which is the novelty of the research. Two-stage experimentation was performed. The newly designed tools substantially outperformed a traditional cylindrical tool, especially in terms of machining time. The main reason for the better machining results of modified tools is the sparking area that differs from the traditional sparking. Comparing against the performance of a traditional cylindrical tool, the newly designed tools offer a considerable reduction in the machining time, radial overcut, and roughness of the inside surfaces of machined holes, amounting to be approximately 50%, 30.6%, and 38.7%, respectively. The drop in the machining time along with a condensed level of radial overcut and surface roughness can shrink the EDM limitations and make the process relatively faster with low machining inaccuracies.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10217411