Loading…
Divergent synthesis and identification of the cellular targets of deoxyelephantopins
Herbal extracts containing sesquiterpene lactones have been extensively used in traditional medicine and are known to be rich in α,β-unsaturated functionalities that can covalently engage target proteins. Here we report synthetic methodologies to access analogues of deoxyelephantopin, a sesquiterpen...
Saved in:
Published in: | Nature communications 2016-08, Vol.7 (1), p.12470-12470, Article 12470 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Herbal extracts containing sesquiterpene lactones have been extensively used in traditional medicine and are known to be rich in α,β-unsaturated functionalities that can covalently engage target proteins. Here we report synthetic methodologies to access analogues of deoxyelephantopin, a sesquiterpene lactone with anticancer properties. Using alkyne-tagged cellular probes and quantitative proteomics analysis, we identified several cellular targets of deoxyelephantopin. We further demonstrate that deoxyelephantopin antagonizes PPARγ activity
in situ
via covalent engagement of a cysteine residue in the zinc-finger motif of this nuclear receptor.
Deoxyelephantopin is a naturally occurring sesquiterpene lactone with known anticancer properties. Here, the authors synthesize deoxyelephantopins and a range of analogues including alkyne-tagged probes, using them to identify its cellular targets. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms12470 |