Loading…

Surface Upwelling off the Zhoushan Islands, East China Sea, from Himawari-8 AHI Data

The summer upwelling around the Zhoushan Islands is well-known. The previous concise review of (mostly) observational studies reveals that the present knowledge of the Zhoushan upwelling is unsatisfactory and has focused on seasonal variations. In this study, a sea surface temperature (SST) gradient...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2022-07, Vol.14 (14), p.3261
Main Authors: Yin, Wenbin, Ma, Youzhi, Wang, Dian, He, Shuangyan, Huang, Daji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The summer upwelling around the Zhoushan Islands is well-known. The previous concise review of (mostly) observational studies reveals that the present knowledge of the Zhoushan upwelling is unsatisfactory and has focused on seasonal variations. In this study, a sea surface temperature (SST) gradient-based upwelling detection algorithm was used. The Level 3 daily and hourly SST data from the geostationary satellite Himawari-8 were used to explore statistical features, seasonal variations, and short-term variations of the Zhoushan upwelling. Despite the duration period being like in previous studies, there is a new finding that the location of the upwelling center has a significant monthly migration. The statistical results show that the potential upwelling spots are clustered in the location with large topographic gradients and can be divided into four aggregation areas: between Gouqi Island and Lvhua Island, off Shengsi Island, around the Zhongjieshan Islands, and off the Taohua-Liuheng Islands. The core area of the Zhoushan upwelling is located at 122°E–123°E, 29.5°N–31.15°N with an irregular ellipse extending from southwest to northeast. The continuous cloud-free satellite images display that the lifecycle of the short-term variations was about 24 h and included two stages: intensification and decay. Meanwhile, the surface upwelling center has onshore–offshore movement under the advective transport of local tidal currents. A preliminary discussion suggests that the quasi-24 h periodic variations may be caused by the competing effect between tidal mixing and the stratification in the water column.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs14143261