Loading…
Sustainable Biodiesel Synthesis from Honne-Rubber-Neem Oil Blend with a Novel Mesoporous Base Catalyst Synthesized from a Mixture of Three Agrowastes
Application of solid catalysts synthesized from agricultural wastes provides an environmentally benign and low-cost process path to synthesize biodiesel. An ash containing an equal mixture of cocoa pod husk, plantain peel and kola nut pod husk ashes (CPK) was obtained by open combustion of each of t...
Saved in:
Published in: | Catalysts 2020-02, Vol.10 (2), p.190 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Application of solid catalysts synthesized from agricultural wastes provides an environmentally benign and low-cost process path to synthesize biodiesel. An ash containing an equal mixture of cocoa pod husk, plantain peel and kola nut pod husk ashes (CPK) was obtained by open combustion of each of the biomass in air and calcined at 500 °C for 4 h. The calcined CPK ash was characterized to determine its catalytic potential. Two-level transesterification technique was used to synthesize biodiesel using the developed catalyst. The process parameters involved were optimized for the microwave-aided transesterification of a blend of honne, rubber seed and neem oils in a volumetric ratio of 20:20:60, respectively. The study showed that the ash derived from combination of the biomass wastes provided a catalyst which consists all necessary catalytic ingredients in their relative abundance. The calcined CPK consists of 47.67% of potassium, 5.56% calcium and 4.21% magnesium attesting to its heterogenous status. The physisorption isotherms reveals that it was dominantly mesoporous in structure and made up of nanoparticles. A maximum of 98.45 wt.% biodiesel was obtained from a MeOH:oil blend of 12:1, CPK concentration of 1.158 wt.% and reaction time of 6 min under microwave irradiation. The quality of the synthesized biodiesel satisfied the requirements stipulated by standard specifications. Thus, this work demonstrates that a blend of agrowastes and mixtures of non-edible oils could be used to synthesize good quality and sustainable biodiesel that can replace fossil diesel. |
---|---|
ISSN: | 2073-4344 2073-4344 |
DOI: | 10.3390/catal10020190 |