Loading…

Structural basis for nuclear import selectivity of pioneer transcription factor SOX2

SOX (SRY-related HMG-box) transcription factors perform critical functions in development and cell differentiation. These roles depend on precise nuclear trafficking, with mutations in the nuclear targeting regions causing developmental diseases and a range of cancers. SOX protein nuclear localizati...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-01, Vol.12 (1), p.28-28, Article 28
Main Authors: Jagga, Bikshapathi, Edwards, Megan, Pagin, Miriam, Wagstaff, Kylie M., Aragão, David, Roman, Noelia, Nanson, Jeffrey D., Raidal, Shane R., Dominado, Nicole, Stewart, Murray, Jans, David A., Hime, Gary R., Nicolis, Silvia K., Basler, Christopher F., Forwood, Jade K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:SOX (SRY-related HMG-box) transcription factors perform critical functions in development and cell differentiation. These roles depend on precise nuclear trafficking, with mutations in the nuclear targeting regions causing developmental diseases and a range of cancers. SOX protein nuclear localization is proposed to be mediated by two nuclear localization signals (NLSs) positioned within the extremities of the DNA-binding HMG-box domain and, although mutations within either cause disease, the mechanistic basis has remained unclear. Unexpectedly, we find here that these two distantly positioned NLSs of SOX2 contribute to a contiguous interface spanning 9 of the 10 ARM domains on the nuclear import adapter IMPα3. We identify key binding determinants and show this interface is critical for neural stem cell maintenance and for Drosophila development. Moreover, we identify a structural basis for the preference of SOX2 binding to IMPα3. In addition to defining the structural basis for SOX protein localization, these results provide a platform for understanding how mutations and post-translational modifications within these regions may modulate nuclear localization and result in clinical disease, and also how other proteins containing multiple NLSs may bind IMPα through an extended recognition interface. The SOX2 pioneer transcription factor performs critical roles in pluripotency and self-renewal of embryonic stem cells. Here the authors show that SOX2’s two nuclear localization signal sequences form a contiguous binding interface on the nuclear import receptor importin-α3, and provide a structural basis for the preference of SOX2 binding to IMPα3.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-20194-0