Loading…
Histogram Equalization to Model Adaptation for Robust Speech Recognition
We propose a new model adaptation method based on the histogram equalization technique for providing robustness in noisy environments. The trained acoustic mean models of a speech recognizer are adapted into environmentally matched conditions by using the histogram equalization algorithm on a single...
Saved in:
Published in: | EURASIP journal on advances in signal processing 2010-01, Vol.2010 (1), p.628018-628018 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose a new model adaptation method based on the histogram equalization technique for providing robustness in noisy environments. The trained acoustic mean models of a speech recognizer are adapted into environmentally matched conditions by using the histogram equalization algorithm on a single utterance basis. For more robust speech recognition in the heavily noisy conditions, trained acoustic covariance models are efficiently adapted by the signal-to-noise ratio-dependent linear interpolation between trained covariance models and utterance-level sample covariance models. Speech recognition experiments on both the digit-based Aurora2 task and the large vocabulary-based task showed that the proposed model adaptation approach provides significant performance improvements compared to the baseline speech recognizer trained on the clean speech data. |
---|---|
ISSN: | 1687-6172 1687-6180 1687-6180 |
DOI: | 10.1186/1687-6180-2010-628018 |