Loading…

An empirical comparison of deep learning explainability approaches for EEG using simulated ground truth

Recent advancements in machine learning and deep learning (DL) based neural decoders have significantly improved decoding capabilities using scalp electroencephalography (EEG). However, the interpretability of DL models remains an under-explored area. In this study, we compared multiple model explan...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2023-10, Vol.13 (1), p.17709-17709, Article 17709
Main Authors: Sujatha Ravindran, Akshay, Contreras-Vidal, Jose
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent advancements in machine learning and deep learning (DL) based neural decoders have significantly improved decoding capabilities using scalp electroencephalography (EEG). However, the interpretability of DL models remains an under-explored area. In this study, we compared multiple model explanation methods to identify the most suitable method for EEG and understand when some of these approaches might fail. A simulation framework was developed to evaluate the robustness and sensitivity of twelve back-propagation-based visualization methods by comparing to ground truth features. Multiple methods tested here showed reliability issues after randomizing either model weights or labels: e.g., the saliency approach, which is the most used visualization technique in EEG, was not class or model-specific. We found that DeepLift was consistently accurate as well as robust to detect the three key attributes tested here (temporal, spatial, and spectral precision). Overall, this study provides a review of model explanation methods for DL-based neural decoders and recommendations to understand when some of these methods fail and what they can capture in EEG.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-43871-8