Loading…
Two-Year Event-Free Survival Prediction in DLBCL Patients Based on In Vivo Radiomics and Clinical Parameters
PurposeFor the identification of high-risk patients in diffuse large B-cell lymphoma (DLBCL), we investigated the prognostic significance of in vivo radiomics derived from baseline [18F]FDG PET/CT and clinical parameters. MethodsPre-treatment [18F]FDG PET/CT scans of 85 patients diagnosed with DLBCL...
Saved in:
Published in: | Frontiers in oncology 2022-06, Vol.12, p.820136-820136 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | PurposeFor the identification of high-risk patients in diffuse large B-cell lymphoma (DLBCL), we investigated the prognostic significance of in vivo radiomics derived from baseline [18F]FDG PET/CT and clinical parameters. MethodsPre-treatment [18F]FDG PET/CT scans of 85 patients diagnosed with DLBCL were assessed. The scans were carried out in two clinical centers. Two-year event-free survival (EFS) was defined. After delineation of lymphoma lesions, conventional PET parameters and in vivo radiomics were extracted. For 2-year EFS prognosis assessment, the Center 1 dataset was utilized as the training set and underwent automated machine learning analysis. The dataset of Center 2 was utilized as an independent test set to validate the established predictive model built by the dataset of Center 1. ResultsThe automated machine learning analysis of the Center 1 dataset revealed that the most important features for building 2-year EFS are as follows: max diameter, neighbor gray tone difference matrix (NGTDM) busyness, total lesion glycolysis, total metabolic tumor volume, and NGTDM coarseness. The predictive model built on the Center 1 dataset yielded 79% sensitivity, 83% specificity, 69% positive predictive value, 89% negative predictive value, and 0.85 AUC by evaluating the Center 2 dataset. ConclusionBased on our dual-center retrospective analysis, predicting 2-year EFS built on imaging features is feasible by utilizing high-performance automated machine learning. |
---|---|
ISSN: | 2234-943X 2234-943X |
DOI: | 10.3389/fonc.2022.820136 |