Loading…

Topological Properties of Braid-Paths Connected 2-Simplices in Covering Spaces under Cyclic Orientations

In general, the braid structures in a topological space can be classified into algebraic forms and geometric forms. This paper investigates the properties of a braid structure involving 2-simplices and a set of directed braid-paths in view of algebraic as well as geometric topology. The 2-simplices...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) 2021-12, Vol.13 (12), p.2382
Main Author: Bagchi, Susmit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In general, the braid structures in a topological space can be classified into algebraic forms and geometric forms. This paper investigates the properties of a braid structure involving 2-simplices and a set of directed braid-paths in view of algebraic as well as geometric topology. The 2-simplices are of the cyclically oriented variety embedded within the disjoint topological covering subspaces where the finite braid-paths are twisted as well as directed. It is shown that the generated homotopic simplicial braids form Abelian groups and the twisted braid-paths successfully admit several varieties of twisted discrete path-homotopy equivalence classes, establishing a set of simplicial fibers. Furthermore, a set of discrete-loop fundamental groups are generated in the covering spaces where the appropriate weight assignments generate multiplicative group structures under a variety of homological formal sums. Interestingly, the resulting smallest non-trivial group is not necessarily unique. The proposed variety of homological formal sum exhibits a loop absorption property if the homotopy path-products are non-commutative. It is considered that the topological covering subspaces are simply connected under embeddings with local homeomorphism maintaining generality.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym13122382