Loading…
Imperceptible Flicker Noise Reduction Using Pseudo-Flicker Weight Functionalized Derivative Equalization in Light-Fidelity Transmission Link
A new technique to reduce flicker noise generated in light-fidelity (Li-Fi) transmission links based on the white light-emitting diode (LED) is proposed. Here, flicker noise with a frequency of 120 Hz, which is twice the frequency of AC power (60 Hz), is generated. The proposed technique is implemen...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2022-11, Vol.22 (22), p.8857 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new technique to reduce flicker noise generated in light-fidelity (Li-Fi) transmission links based on the white light-emitting diode (LED) is proposed. Here, flicker noise with a frequency of 120 Hz, which is twice the frequency of AC power (60 Hz), is generated. The proposed technique is implemented in the receiver of the Li-Fi link. It can reduce flicker noise regardless of various digital modulation formats. In addition, there is no need to change the structure of the electrical circuit driving the LED to reduce the flicker noise. As a result, the non-return to-zero-on-off-keying (NRZ-OOK) signal waveform is tilted according to the flicker noise waveform. We implement the derivative equalization with a pseudo-flicker weight function to reduce the flicker noise. The derivative value of the NRZ-OOK signal mixed with flicker noise becomes larger than that without the flicker noise. In the proposed technique, the derivative value between adjacent sampling points is suppressed below the preset thresholds when it is greater than the preset threshold. Furthermore, a pseudo-flicker weight function is applied to accelerate the flicker noise reduction. As a result, using the proposed technique, a 2 dB signal-to-noise ratio (SNR) gain is obtained based on the bit error rate (BER) threshold (3.5 Ă— 10
) corresponding to 10% flicker modulation, which is known to have no serious effect on human health. This means that it is possible to implement a Li-Fi transmission link based on an illumination environment with a flicker modulation reduced from 10% to 7%. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s22228857 |