Loading…
Multiple Object Tracking Using Re-Identification Model with Attention Module
Multi-object tracking (MOT) has gained significant attention in computer vision due to its wide range of applications. Specifically, detection-based trackers have shown high performance in MOT, but they tend to fail in occlusive scenarios such as the moment when objects overlap or separate. In this...
Saved in:
Published in: | Applied sciences 2023-04, Vol.13 (7), p.4298 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multi-object tracking (MOT) has gained significant attention in computer vision due to its wide range of applications. Specifically, detection-based trackers have shown high performance in MOT, but they tend to fail in occlusive scenarios such as the moment when objects overlap or separate. In this paper, we propose a triplet-based MOT network that integrates the tracking information and the visual features of the object. Using a triplet-based image feature, the network can differentiate similar-looking objects, reducing the number of identity switches over a long period. Furthermore, an attention-based re-identification model that focuses on the appearance of objects was introduced to extract the feature vectors from the images to effectively associate the objects. The extensive experimental results demonstrated that the proposed method outperforms existing methods on the ID switch metric and improves the detection performance of the tracking system. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app13074298 |