Loading…

Quantum Density Peak Clustering Algorithm

A widely used clustering algorithm, density peak clustering (DPC), assigns different attribute values to data points through the distance between data points, and then determines the number and range of clustering by attribute values. However, DPC is inefficient when dealing with scenes with a large...

Full description

Saved in:
Bibliographic Details
Published in:Entropy (Basel, Switzerland) Switzerland), 2022-02, Vol.24 (2), p.237
Main Authors: Wu, Zhihao, Song, Tingting, Zhang, Yanbing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A widely used clustering algorithm, density peak clustering (DPC), assigns different attribute values to data points through the distance between data points, and then determines the number and range of clustering by attribute values. However, DPC is inefficient when dealing with scenes with a large amount of data, and the range of parameters is not easy to determine. To fix these problems, we propose a quantum DPC (QDPC) algorithm based on a quantum DistCalc circuit and a Grover circuit. The time complexity is reduced to O(log(N2)+6N+N), whereas that of the traditional algorithm is O(N2). The space complexity is also decreased from O(N·⌈logN⌉) to O(⌈logN⌉).
ISSN:1099-4300
1099-4300
DOI:10.3390/e24020237