Loading…
The technological challenge for current generation nuclear reactors
The present paper deals with the proposal of an additional safety barrier for the class of large (1000 MWe or more) Light Water Reactors (LWR) now in operation, in construction, or under design. Emphasis is given to the motivations or the needs for the barrier. Two main parts of the paper can be dis...
Saved in:
Published in: | Nuclear energy and technology 2019-09, Vol.5 (3), p.183-199 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The present paper deals with the proposal of an additional safety barrier for the class of large (1000 MWe or more) Light Water Reactors (LWR) now in operation, in construction, or under design. Emphasis is given to the motivations or the needs for the barrier. Two main parts of the paper can be distinguished. The following topics are discussed in the former part (section 2): (a) the weakness of the barrier constituted by the current design of nuclear fuel; (b) the continuously increasing complexity of the system, with main reference to the Instrumentation and Control (I&C); (c) the role that the Large Break Loss of Coolant Accident (LBLOCA) had for arriving at the current layout of the Reactor Coolant System (RCS). Furthermore avoiding the severe accidents in 1979, 1987 and 2011, is at the basis of the proposal. In the latter part (sections 3 and 4), the elements of the proposed technological safety barrier are discussed: the As-Low-As-Reasonably-Achievable (ALARA) principle, the Best Estimate Plus Uncertainty (BEPU) approach, the Extended Safety Margin Detection (E-SMD) hardware, the Emergency Rescue Team (ERT) strategy (or a virtual entity for the reactor) and the Independent Assessment (IA) concept. The additional safety barrier, although not demonstrated in the paper, is expected to reduce for a factor in the range 10–1000 the probability of core melt and to have a cost in the order of 1% the cost of a nuclear reactor unit. |
---|---|
ISSN: | 2452-3038 2452-3038 |
DOI: | 10.3897/nucet.5.38117 |