Loading…
Graph Neural Network-Based Short‑Term Load Forecasting with Temporal Convolution
An accurate short-term load forecasting plays an important role in modern power system’s operation and economic development. However, short-term load forecasting is affected by multiple factors, and due to the complexity of the relationships between factors, the graph structure in this task is unkno...
Saved in:
Published in: | Data science and engineering 2024-06, Vol.9 (2), p.113-132 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An accurate short-term load forecasting plays an important role in modern power system’s operation and economic development. However, short-term load forecasting is affected by multiple factors, and due to the complexity of the relationships between factors, the graph structure in this task is unknown. On the other hand, existing methods do not fully aggregating data information through the inherent relationships between various factors. In this paper, we propose a short-term load forecasting framework based on graph neural networks and dilated 1D-CNN, called GLFN-TC. GLFN-TC uses the graph learning module to automatically learn the relationships between variables to solve problem with unknown graph structure. GLFN-TC effectively handles temporal and spatial dependencies through two modules. In temporal convolution module, GLFN-TC uses dilated 1D-CNN to extract temporal dependencies from historical data of each node. In densely connected residual convolution module, in order to ensure that data information is not lost, GLFN-TC uses the graph convolution of densely connected residual to make full use of the data information of each graph convolution layer. Finally, the predicted values are obtained through the load forecasting module. We conducted five studies to verify the outperformance of GLFN-TC. In short-term load forecasting, using MSE as an example, the experimental results of GLFN-TC decreased by 0.0396, 0.0137, 0.0358, 0.0213 and 0.0337 compared to the optimal baseline method on ISO-NE, AT, AP, SH and NCENT datasets, respectively. Results show that GLFN-TC can achieve higher prediction accuracy than the existing common methods. |
---|---|
ISSN: | 2364-1185 2364-1541 |
DOI: | 10.1007/s41019-023-00233-8 |