Loading…

On hyperbolic virtual polytopes and hyperbolic fans

Hyperbolic virtual polytopes arose originally as polytopal versions of counterexamples to the following A.D.Alexandrov’s uniqueness conjecture: Let K ⊂ ℝ3 be a smooth convex body. If for a constant C, at every point of ∂K, we have R 1 ≤ C ≤ R 2 then K is a ball. (R 1 and R 2 stand for the principal...

Full description

Saved in:
Bibliographic Details
Published in:Central European journal of mathematics 2006-06, Vol.4 (2), p.270-293
Main Author: Panina, Gaiane
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hyperbolic virtual polytopes arose originally as polytopal versions of counterexamples to the following A.D.Alexandrov’s uniqueness conjecture: Let K ⊂ ℝ3 be a smooth convex body. If for a constant C, at every point of ∂K, we have R 1 ≤ C ≤ R 2 then K is a ball. (R 1 and R 2 stand for the principal curvature radii of ∂K.) This paper gives a new (in comparison with the previous construction by Y.Martinez-Maure and by G.Panina) series of counterexamples to the conjecture. In particular, a hyperbolic virtual polytope (and therefore, a hyperbolic hérisson) with odd an number of horns is constructed. Moreover, various properties of hyperbolic virtual polytopes and their fans are discussed.
ISSN:1895-1074
2391-5455
1644-3616
DOI:10.2478/s11533-006-0006-9