Loading…
Foliar brassinosteroid analogue (DI-31) sprays increase drought tolerance by improving plant growth and photosynthetic efficiency in lulo plants
The use of agronomic alternatives such as plant hormone sprays has been considered a tool to mitigate drought stress. This research aimed to evaluate the use of foliar brassinosteroid analogue DI-31 (BRs) sprays on plant growth, leaf exchange and chlorophyll a fluorescence parameters, and biochemica...
Saved in:
Published in: | Heliyon 2022-02, Vol.8 (2), p.e08977-e08977, Article e08977 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The use of agronomic alternatives such as plant hormone sprays has been considered a tool to mitigate drought stress. This research aimed to evaluate the use of foliar brassinosteroid analogue DI-31 (BRs) sprays on plant growth, leaf exchange and chlorophyll a fluorescence parameters, and biochemical variables in lulo (Solanum quitoense L. cv. septentrionale) seedlings grown under drought stress conditions. Seedlings were grown in plastic pots (3 L) using a mix between peat and sand (1:1 v/v) as substrate. Lulo plants were subjected to drought stress by suppressing 100% of the water needs at 30–37 and 73–80 days after transplanting (DAT). Foliar BRs analogue (DI-31) sprays were carried out at four different rates (0, 1, 2, 4, or 8 mL of analogue per liter) at different times (30, 33, 44, 60, 73, and 76 DAT). Drought stress caused a reduction in the Fv/Fm ratio, leaf gas exchange properties, total biomass, and relative water content. Foliar DI-31 sprays enhanced leaf photosynthesis in well-watered (WW) (∼10.7 μmol m−2 s−1) or water-stressed plants (WS) (∼6.1 μmol m−2 s−1) when lulo plants were treated at a dose of 4 and 8 mL·L−1 compared to their respective controls (0 mL·L−1 for WW: 8.83 μmol m−2 s−1 and WS: 2.01 μmol m−2 s−1). Also, DI-31 sprays enhanced the photochemical efficiency of PSII, and plant growth. They also increased the concentration of photosynthetic pigments (TChl and Cx + c) and reduced lipid peroxidation of membranes (MDA) under drought conditions. The results allow us to suggest that the use of DI-31 at a dose of 4 or 8 mL·L−1 can be a tool for managing water stress conditions caused by low water availability in the soil in lulo-producing areas to face situations of moderate water deficit at different times of the year.
Drought stress; Andean fruit species; Leaf photosynthesis; Foliar spray; Malondialdehyde; Plant hormones. |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2022.e08977 |