Loading…
Pre-Trained Language Models and Their Applications
[Display omitted] Pre-trained language models have achieved striking success in natural language processing (NLP), leading to a paradigm shift from supervised learning to pre-training followed by fine-tuning. The NLP community has witnessed a surge of research interest in improving pre-trained model...
Saved in:
Published in: | Engineering (Beijing, China) China), 2023-06, Vol.25 (6), p.51-65 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
Pre-trained language models have achieved striking success in natural language processing (NLP), leading to a paradigm shift from supervised learning to pre-training followed by fine-tuning. The NLP community has witnessed a surge of research interest in improving pre-trained models. This article presents a comprehensive review of representative work and recent progress in the NLP field and introduces the taxonomy of pre-trained models. We first give a brief introduction of pre-trained models, followed by characteristic methods and frameworks. We then introduce and analyze the impact and challenges of pre-trained models and their downstream applications. Finally, we briefly conclude and address future research directions in this field. |
---|---|
ISSN: | 2095-8099 |
DOI: | 10.1016/j.eng.2022.04.024 |