Loading…

Impact of Changes in the Required Thermal Insulation of Building Envelope on Energy Demand, Heating Costs, Emissions, and Temperature in Buildings

Various methods can be used to reduce energy consumption in buildings. One of them is the tightening of energy requirements, which, like other methods, cannot result in a worsening of the indoor environmental quality. The article presents a study on the impact of changes in the thermal insulation of...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2021-01, Vol.14 (1), p.56
Main Authors: Jezierski, Walery, Sadowska, Beata, Pawłowski, Krzysztof
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Various methods can be used to reduce energy consumption in buildings. One of them is the tightening of energy requirements, which, like other methods, cannot result in a worsening of the indoor environmental quality. The article presents a study on the impact of changes in the thermal insulation of the building envelope on the energy demand, heating costs, and emissions. Mathematical models of the dependence of the index of annual usable energy demand for heating (EUH) of a residential house on the thermal transmittance coefficients (Ui) of selected building elements were developed. Values of Ui were adopted at three levels, corresponding to the maximum required values—as approved in Polish law for the periods from 2014, 2017, and 2021. The analyses were conducted for the location of the building in three of the five climate zones of Poland. It turned out that the differences in the energy demand in various locations in Poland amount to 32.6%. The change in Ui in the analyzed period causes a decrease of EUH by almost 27%. Financial savings and a reduction of emissions strongly depend on the fuel used in the building. Increasing the level of thermal insulation of walls increases the perceptible temperature in rooms by 1.2–1.5%.
ISSN:1996-1073
1996-1073
DOI:10.3390/en14010056