Loading…

Machine learning identifies straightforward early warning rules for human Puumala hantavirus outbreaks

Human Puumala virus (PUUV) infections in Germany fluctuate multi-annually, following fluctuations of the bank vole population size. We applied a transformation to the annual incidence values and established a heuristic method to develop a straightforward robust model for the binary human infection r...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2023-03, Vol.13 (1), p.3585-3585, Article 3585
Main Authors: Kazasidis, Orestis, Jacob, Jens
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Human Puumala virus (PUUV) infections in Germany fluctuate multi-annually, following fluctuations of the bank vole population size. We applied a transformation to the annual incidence values and established a heuristic method to develop a straightforward robust model for the binary human infection risk at the district level. The classification model was powered by a machine-learning algorithm and achieved 85% sensitivity and 71% precision, despite using only three weather parameters from the previous years as inputs, namely the soil temperature in April of two years before and in September of the previous year, and the sunshine duration in September of two years before. Moreover, we introduced the PUUV Outbreak Index that quantifies the spatial synchrony of local PUUV-outbreaks, and applied it to the seven reported outbreaks in the period 2006–2021. Finally, we used the classification model to estimate the PUUV Outbreak Index, achieving 20% maximum uncertainty.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-30596-x