Loading…
Elevation Changes of the Antarctic Ice Sheet from Joint Envisat and CryoSat-2 Radar Altimetry
The elevation changes of ice sheets have been recognized as an essential climate variable. Long-term time series of these changes are an important parameter to understand climate change, and the longest time-series of ice sheet elevation changes can be derived from combining multiple Ku-band satelli...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2020-11, Vol.12 (22), p.3746 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-b02700722c5d0a22f35a5e16d44285c82667154569db837bd8afb6f5a90a55de3 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-b02700722c5d0a22f35a5e16d44285c82667154569db837bd8afb6f5a90a55de3 |
container_end_page | |
container_issue | 22 |
container_start_page | 3746 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 12 |
creator | Zhang, Baojun Wang, Zemin Yang, Quanming Liu, Jingbin An, Jiachun Li, Fei Liu, Tingting Geng, Hong |
description | The elevation changes of ice sheets have been recognized as an essential climate variable. Long-term time series of these changes are an important parameter to understand climate change, and the longest time-series of ice sheet elevation changes can be derived from combining multiple Ku-band satellite altimetry missions. However, unresolved intermission biases obscure the record. Here, we revise the mathematical model commonly used in the literature to simultaneously correct for intermission bias and ascending–descending bias to ensure the self-consistency and cohesion of the elevation time series across missions. This updated approach is applied to combine Envisat and CryoSat-2 radar altimetry in the period of 2002–2019. We tested this approach by validating it against airborne and satellite laser altimetry. Combining the detailed temporal and spatial evolution of elevation changes with firn densification-modeled volume changes due to surface processes, we found that the Amundsen Sea sector accounts for most of the total volume loss of the Antarctic Ice Sheet (AIS), mainly from ice dynamics. However, surface processes dominate the volume changes in the key regions, such as the Totten Glacier sector, Dronning Maud Land, Princess Elizabeth Land, and the Bellingshausen Sea sector. Overall, accelerated volume loss in the West Antarctic continues to outpace the gains observed in the East Antarctic. The total volume change during 2002–2019 for the AIS was −68.7 ± 8.1 km3/y, with an acceleration of −5.5 ± 0.9 km3/y2. |
doi_str_mv | 10.3390/rs12223746 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2ae46cdae9ac47a99c9da9f0cb9d01e2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2ae46cdae9ac47a99c9da9f0cb9d01e2</doaj_id><sourcerecordid>2461839661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-b02700722c5d0a22f35a5e16d44285c82667154569db837bd8afb6f5a90a55de3</originalsourceid><addsrcrecordid>eNpNkVtLAzEQhRdRsKgv_oKAb8JqMrns5rGUqhVB8PIoYTbJtlvaTU1Sof_e1Yo6LzMMh2_OcIrinNErzjW9jokBAK-EOihGQCsoBWg4_DcfF2cpLelQnDNNxah4m678B-Yu9GSywH7uEwktyQtPxn3GaHNnycx68rzwPpM2hjW5D12fybT_6BJmgr0jk7gLz5hLIE_oMJLxKndrn-PutDhqcZX82U8_KV5vpi-Tu_Lh8XY2GT-UliuWy4ZCRQePYKWjCNByidIz5YSAWtoalKqYFFJp19S8alyNbaNaiZqilM7zk2K257qAS7OJ3RrjzgTszPcixLnBOLyy8gbQC2Udeo1WVKi11Q51S22jHWUeBtbFnrWJ4X3rUzbLsI39YN-AUKzmWik2qC73KhtDStG3v1cZNV9pmL80-CeCgHrj</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461839661</pqid></control><display><type>article</type><title>Elevation Changes of the Antarctic Ice Sheet from Joint Envisat and CryoSat-2 Radar Altimetry</title><source>Publicly Available Content Database</source><creator>Zhang, Baojun ; Wang, Zemin ; Yang, Quanming ; Liu, Jingbin ; An, Jiachun ; Li, Fei ; Liu, Tingting ; Geng, Hong</creator><creatorcontrib>Zhang, Baojun ; Wang, Zemin ; Yang, Quanming ; Liu, Jingbin ; An, Jiachun ; Li, Fei ; Liu, Tingting ; Geng, Hong</creatorcontrib><description>The elevation changes of ice sheets have been recognized as an essential climate variable. Long-term time series of these changes are an important parameter to understand climate change, and the longest time-series of ice sheet elevation changes can be derived from combining multiple Ku-band satellite altimetry missions. However, unresolved intermission biases obscure the record. Here, we revise the mathematical model commonly used in the literature to simultaneously correct for intermission bias and ascending–descending bias to ensure the self-consistency and cohesion of the elevation time series across missions. This updated approach is applied to combine Envisat and CryoSat-2 radar altimetry in the period of 2002–2019. We tested this approach by validating it against airborne and satellite laser altimetry. Combining the detailed temporal and spatial evolution of elevation changes with firn densification-modeled volume changes due to surface processes, we found that the Amundsen Sea sector accounts for most of the total volume loss of the Antarctic Ice Sheet (AIS), mainly from ice dynamics. However, surface processes dominate the volume changes in the key regions, such as the Totten Glacier sector, Dronning Maud Land, Princess Elizabeth Land, and the Bellingshausen Sea sector. Overall, accelerated volume loss in the West Antarctic continues to outpace the gains observed in the East Antarctic. The total volume change during 2002–2019 for the AIS was −68.7 ± 8.1 km3/y, with an acceleration of −5.5 ± 0.9 km3/y2.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs12223746</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Airborne lasers ; Altimeters ; Antarctic ice sheet ; Bias ; Climate change ; Densification ; elevation changes ; Firn ; Glaciers ; Ice ; Ice sheets ; Lasers ; long-term time series ; Mathematical models ; Missions ; Radar ; Remote sensing ; Satellite altimetry ; satellite radar altimetry ; Satellites ; Time series ; Topography</subject><ispartof>Remote sensing (Basel, Switzerland), 2020-11, Vol.12 (22), p.3746</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-b02700722c5d0a22f35a5e16d44285c82667154569db837bd8afb6f5a90a55de3</citedby><cites>FETCH-LOGICAL-c361t-b02700722c5d0a22f35a5e16d44285c82667154569db837bd8afb6f5a90a55de3</cites><orcidid>0000-0002-3106-0714 ; 0000-0001-5438-8723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2461839661/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2461839661?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Zhang, Baojun</creatorcontrib><creatorcontrib>Wang, Zemin</creatorcontrib><creatorcontrib>Yang, Quanming</creatorcontrib><creatorcontrib>Liu, Jingbin</creatorcontrib><creatorcontrib>An, Jiachun</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Liu, Tingting</creatorcontrib><creatorcontrib>Geng, Hong</creatorcontrib><title>Elevation Changes of the Antarctic Ice Sheet from Joint Envisat and CryoSat-2 Radar Altimetry</title><title>Remote sensing (Basel, Switzerland)</title><description>The elevation changes of ice sheets have been recognized as an essential climate variable. Long-term time series of these changes are an important parameter to understand climate change, and the longest time-series of ice sheet elevation changes can be derived from combining multiple Ku-band satellite altimetry missions. However, unresolved intermission biases obscure the record. Here, we revise the mathematical model commonly used in the literature to simultaneously correct for intermission bias and ascending–descending bias to ensure the self-consistency and cohesion of the elevation time series across missions. This updated approach is applied to combine Envisat and CryoSat-2 radar altimetry in the period of 2002–2019. We tested this approach by validating it against airborne and satellite laser altimetry. Combining the detailed temporal and spatial evolution of elevation changes with firn densification-modeled volume changes due to surface processes, we found that the Amundsen Sea sector accounts for most of the total volume loss of the Antarctic Ice Sheet (AIS), mainly from ice dynamics. However, surface processes dominate the volume changes in the key regions, such as the Totten Glacier sector, Dronning Maud Land, Princess Elizabeth Land, and the Bellingshausen Sea sector. Overall, accelerated volume loss in the West Antarctic continues to outpace the gains observed in the East Antarctic. The total volume change during 2002–2019 for the AIS was −68.7 ± 8.1 km3/y, with an acceleration of −5.5 ± 0.9 km3/y2.</description><subject>Airborne lasers</subject><subject>Altimeters</subject><subject>Antarctic ice sheet</subject><subject>Bias</subject><subject>Climate change</subject><subject>Densification</subject><subject>elevation changes</subject><subject>Firn</subject><subject>Glaciers</subject><subject>Ice</subject><subject>Ice sheets</subject><subject>Lasers</subject><subject>long-term time series</subject><subject>Mathematical models</subject><subject>Missions</subject><subject>Radar</subject><subject>Remote sensing</subject><subject>Satellite altimetry</subject><subject>satellite radar altimetry</subject><subject>Satellites</subject><subject>Time series</subject><subject>Topography</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtLAzEQhRdRsKgv_oKAb8JqMrns5rGUqhVB8PIoYTbJtlvaTU1Sof_e1Yo6LzMMh2_OcIrinNErzjW9jokBAK-EOihGQCsoBWg4_DcfF2cpLelQnDNNxah4m678B-Yu9GSywH7uEwktyQtPxn3GaHNnycx68rzwPpM2hjW5D12fybT_6BJmgr0jk7gLz5hLIE_oMJLxKndrn-PutDhqcZX82U8_KV5vpi-Tu_Lh8XY2GT-UliuWy4ZCRQePYKWjCNByidIz5YSAWtoalKqYFFJp19S8alyNbaNaiZqilM7zk2K257qAS7OJ3RrjzgTszPcixLnBOLyy8gbQC2Udeo1WVKi11Q51S22jHWUeBtbFnrWJ4X3rUzbLsI39YN-AUKzmWik2qC73KhtDStG3v1cZNV9pmL80-CeCgHrj</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Zhang, Baojun</creator><creator>Wang, Zemin</creator><creator>Yang, Quanming</creator><creator>Liu, Jingbin</creator><creator>An, Jiachun</creator><creator>Li, Fei</creator><creator>Liu, Tingting</creator><creator>Geng, Hong</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3106-0714</orcidid><orcidid>https://orcid.org/0000-0001-5438-8723</orcidid></search><sort><creationdate>20201101</creationdate><title>Elevation Changes of the Antarctic Ice Sheet from Joint Envisat and CryoSat-2 Radar Altimetry</title><author>Zhang, Baojun ; Wang, Zemin ; Yang, Quanming ; Liu, Jingbin ; An, Jiachun ; Li, Fei ; Liu, Tingting ; Geng, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-b02700722c5d0a22f35a5e16d44285c82667154569db837bd8afb6f5a90a55de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Airborne lasers</topic><topic>Altimeters</topic><topic>Antarctic ice sheet</topic><topic>Bias</topic><topic>Climate change</topic><topic>Densification</topic><topic>elevation changes</topic><topic>Firn</topic><topic>Glaciers</topic><topic>Ice</topic><topic>Ice sheets</topic><topic>Lasers</topic><topic>long-term time series</topic><topic>Mathematical models</topic><topic>Missions</topic><topic>Radar</topic><topic>Remote sensing</topic><topic>Satellite altimetry</topic><topic>satellite radar altimetry</topic><topic>Satellites</topic><topic>Time series</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Baojun</creatorcontrib><creatorcontrib>Wang, Zemin</creatorcontrib><creatorcontrib>Yang, Quanming</creatorcontrib><creatorcontrib>Liu, Jingbin</creatorcontrib><creatorcontrib>An, Jiachun</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Liu, Tingting</creatorcontrib><creatorcontrib>Geng, Hong</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Baojun</au><au>Wang, Zemin</au><au>Yang, Quanming</au><au>Liu, Jingbin</au><au>An, Jiachun</au><au>Li, Fei</au><au>Liu, Tingting</au><au>Geng, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elevation Changes of the Antarctic Ice Sheet from Joint Envisat and CryoSat-2 Radar Altimetry</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>12</volume><issue>22</issue><spage>3746</spage><pages>3746-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>The elevation changes of ice sheets have been recognized as an essential climate variable. Long-term time series of these changes are an important parameter to understand climate change, and the longest time-series of ice sheet elevation changes can be derived from combining multiple Ku-band satellite altimetry missions. However, unresolved intermission biases obscure the record. Here, we revise the mathematical model commonly used in the literature to simultaneously correct for intermission bias and ascending–descending bias to ensure the self-consistency and cohesion of the elevation time series across missions. This updated approach is applied to combine Envisat and CryoSat-2 radar altimetry in the period of 2002–2019. We tested this approach by validating it against airborne and satellite laser altimetry. Combining the detailed temporal and spatial evolution of elevation changes with firn densification-modeled volume changes due to surface processes, we found that the Amundsen Sea sector accounts for most of the total volume loss of the Antarctic Ice Sheet (AIS), mainly from ice dynamics. However, surface processes dominate the volume changes in the key regions, such as the Totten Glacier sector, Dronning Maud Land, Princess Elizabeth Land, and the Bellingshausen Sea sector. Overall, accelerated volume loss in the West Antarctic continues to outpace the gains observed in the East Antarctic. The total volume change during 2002–2019 for the AIS was −68.7 ± 8.1 km3/y, with an acceleration of −5.5 ± 0.9 km3/y2.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs12223746</doi><orcidid>https://orcid.org/0000-0002-3106-0714</orcidid><orcidid>https://orcid.org/0000-0001-5438-8723</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2020-11, Vol.12 (22), p.3746 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2ae46cdae9ac47a99c9da9f0cb9d01e2 |
source | Publicly Available Content Database |
subjects | Airborne lasers Altimeters Antarctic ice sheet Bias Climate change Densification elevation changes Firn Glaciers Ice Ice sheets Lasers long-term time series Mathematical models Missions Radar Remote sensing Satellite altimetry satellite radar altimetry Satellites Time series Topography |
title | Elevation Changes of the Antarctic Ice Sheet from Joint Envisat and CryoSat-2 Radar Altimetry |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A14%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elevation%20Changes%20of%20the%20Antarctic%20Ice%20Sheet%20from%20Joint%20Envisat%20and%20CryoSat-2%20Radar%20Altimetry&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Zhang,%20Baojun&rft.date=2020-11-01&rft.volume=12&rft.issue=22&rft.spage=3746&rft.pages=3746-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs12223746&rft_dat=%3Cproquest_doaj_%3E2461839661%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-b02700722c5d0a22f35a5e16d44285c82667154569db837bd8afb6f5a90a55de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2461839661&rft_id=info:pmid/&rfr_iscdi=true |