Loading…

Elevation Changes of the Antarctic Ice Sheet from Joint Envisat and CryoSat-2 Radar Altimetry

The elevation changes of ice sheets have been recognized as an essential climate variable. Long-term time series of these changes are an important parameter to understand climate change, and the longest time-series of ice sheet elevation changes can be derived from combining multiple Ku-band satelli...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2020-11, Vol.12 (22), p.3746
Main Authors: Zhang, Baojun, Wang, Zemin, Yang, Quanming, Liu, Jingbin, An, Jiachun, Li, Fei, Liu, Tingting, Geng, Hong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-b02700722c5d0a22f35a5e16d44285c82667154569db837bd8afb6f5a90a55de3
cites cdi_FETCH-LOGICAL-c361t-b02700722c5d0a22f35a5e16d44285c82667154569db837bd8afb6f5a90a55de3
container_end_page
container_issue 22
container_start_page 3746
container_title Remote sensing (Basel, Switzerland)
container_volume 12
creator Zhang, Baojun
Wang, Zemin
Yang, Quanming
Liu, Jingbin
An, Jiachun
Li, Fei
Liu, Tingting
Geng, Hong
description The elevation changes of ice sheets have been recognized as an essential climate variable. Long-term time series of these changes are an important parameter to understand climate change, and the longest time-series of ice sheet elevation changes can be derived from combining multiple Ku-band satellite altimetry missions. However, unresolved intermission biases obscure the record. Here, we revise the mathematical model commonly used in the literature to simultaneously correct for intermission bias and ascending–descending bias to ensure the self-consistency and cohesion of the elevation time series across missions. This updated approach is applied to combine Envisat and CryoSat-2 radar altimetry in the period of 2002–2019. We tested this approach by validating it against airborne and satellite laser altimetry. Combining the detailed temporal and spatial evolution of elevation changes with firn densification-modeled volume changes due to surface processes, we found that the Amundsen Sea sector accounts for most of the total volume loss of the Antarctic Ice Sheet (AIS), mainly from ice dynamics. However, surface processes dominate the volume changes in the key regions, such as the Totten Glacier sector, Dronning Maud Land, Princess Elizabeth Land, and the Bellingshausen Sea sector. Overall, accelerated volume loss in the West Antarctic continues to outpace the gains observed in the East Antarctic. The total volume change during 2002–2019 for the AIS was −68.7 ± 8.1 km3/y, with an acceleration of −5.5 ± 0.9 km3/y2.
doi_str_mv 10.3390/rs12223746
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2ae46cdae9ac47a99c9da9f0cb9d01e2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2ae46cdae9ac47a99c9da9f0cb9d01e2</doaj_id><sourcerecordid>2461839661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-b02700722c5d0a22f35a5e16d44285c82667154569db837bd8afb6f5a90a55de3</originalsourceid><addsrcrecordid>eNpNkVtLAzEQhRdRsKgv_oKAb8JqMrns5rGUqhVB8PIoYTbJtlvaTU1Sof_e1Yo6LzMMh2_OcIrinNErzjW9jokBAK-EOihGQCsoBWg4_DcfF2cpLelQnDNNxah4m678B-Yu9GSywH7uEwktyQtPxn3GaHNnycx68rzwPpM2hjW5D12fybT_6BJmgr0jk7gLz5hLIE_oMJLxKndrn-PutDhqcZX82U8_KV5vpi-Tu_Lh8XY2GT-UliuWy4ZCRQePYKWjCNByidIz5YSAWtoalKqYFFJp19S8alyNbaNaiZqilM7zk2K257qAS7OJ3RrjzgTszPcixLnBOLyy8gbQC2Udeo1WVKi11Q51S22jHWUeBtbFnrWJ4X3rUzbLsI39YN-AUKzmWik2qC73KhtDStG3v1cZNV9pmL80-CeCgHrj</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461839661</pqid></control><display><type>article</type><title>Elevation Changes of the Antarctic Ice Sheet from Joint Envisat and CryoSat-2 Radar Altimetry</title><source>Publicly Available Content Database</source><creator>Zhang, Baojun ; Wang, Zemin ; Yang, Quanming ; Liu, Jingbin ; An, Jiachun ; Li, Fei ; Liu, Tingting ; Geng, Hong</creator><creatorcontrib>Zhang, Baojun ; Wang, Zemin ; Yang, Quanming ; Liu, Jingbin ; An, Jiachun ; Li, Fei ; Liu, Tingting ; Geng, Hong</creatorcontrib><description>The elevation changes of ice sheets have been recognized as an essential climate variable. Long-term time series of these changes are an important parameter to understand climate change, and the longest time-series of ice sheet elevation changes can be derived from combining multiple Ku-band satellite altimetry missions. However, unresolved intermission biases obscure the record. Here, we revise the mathematical model commonly used in the literature to simultaneously correct for intermission bias and ascending–descending bias to ensure the self-consistency and cohesion of the elevation time series across missions. This updated approach is applied to combine Envisat and CryoSat-2 radar altimetry in the period of 2002–2019. We tested this approach by validating it against airborne and satellite laser altimetry. Combining the detailed temporal and spatial evolution of elevation changes with firn densification-modeled volume changes due to surface processes, we found that the Amundsen Sea sector accounts for most of the total volume loss of the Antarctic Ice Sheet (AIS), mainly from ice dynamics. However, surface processes dominate the volume changes in the key regions, such as the Totten Glacier sector, Dronning Maud Land, Princess Elizabeth Land, and the Bellingshausen Sea sector. Overall, accelerated volume loss in the West Antarctic continues to outpace the gains observed in the East Antarctic. The total volume change during 2002–2019 for the AIS was −68.7 ± 8.1 km3/y, with an acceleration of −5.5 ± 0.9 km3/y2.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs12223746</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Airborne lasers ; Altimeters ; Antarctic ice sheet ; Bias ; Climate change ; Densification ; elevation changes ; Firn ; Glaciers ; Ice ; Ice sheets ; Lasers ; long-term time series ; Mathematical models ; Missions ; Radar ; Remote sensing ; Satellite altimetry ; satellite radar altimetry ; Satellites ; Time series ; Topography</subject><ispartof>Remote sensing (Basel, Switzerland), 2020-11, Vol.12 (22), p.3746</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-b02700722c5d0a22f35a5e16d44285c82667154569db837bd8afb6f5a90a55de3</citedby><cites>FETCH-LOGICAL-c361t-b02700722c5d0a22f35a5e16d44285c82667154569db837bd8afb6f5a90a55de3</cites><orcidid>0000-0002-3106-0714 ; 0000-0001-5438-8723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2461839661/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2461839661?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Zhang, Baojun</creatorcontrib><creatorcontrib>Wang, Zemin</creatorcontrib><creatorcontrib>Yang, Quanming</creatorcontrib><creatorcontrib>Liu, Jingbin</creatorcontrib><creatorcontrib>An, Jiachun</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Liu, Tingting</creatorcontrib><creatorcontrib>Geng, Hong</creatorcontrib><title>Elevation Changes of the Antarctic Ice Sheet from Joint Envisat and CryoSat-2 Radar Altimetry</title><title>Remote sensing (Basel, Switzerland)</title><description>The elevation changes of ice sheets have been recognized as an essential climate variable. Long-term time series of these changes are an important parameter to understand climate change, and the longest time-series of ice sheet elevation changes can be derived from combining multiple Ku-band satellite altimetry missions. However, unresolved intermission biases obscure the record. Here, we revise the mathematical model commonly used in the literature to simultaneously correct for intermission bias and ascending–descending bias to ensure the self-consistency and cohesion of the elevation time series across missions. This updated approach is applied to combine Envisat and CryoSat-2 radar altimetry in the period of 2002–2019. We tested this approach by validating it against airborne and satellite laser altimetry. Combining the detailed temporal and spatial evolution of elevation changes with firn densification-modeled volume changes due to surface processes, we found that the Amundsen Sea sector accounts for most of the total volume loss of the Antarctic Ice Sheet (AIS), mainly from ice dynamics. However, surface processes dominate the volume changes in the key regions, such as the Totten Glacier sector, Dronning Maud Land, Princess Elizabeth Land, and the Bellingshausen Sea sector. Overall, accelerated volume loss in the West Antarctic continues to outpace the gains observed in the East Antarctic. The total volume change during 2002–2019 for the AIS was −68.7 ± 8.1 km3/y, with an acceleration of −5.5 ± 0.9 km3/y2.</description><subject>Airborne lasers</subject><subject>Altimeters</subject><subject>Antarctic ice sheet</subject><subject>Bias</subject><subject>Climate change</subject><subject>Densification</subject><subject>elevation changes</subject><subject>Firn</subject><subject>Glaciers</subject><subject>Ice</subject><subject>Ice sheets</subject><subject>Lasers</subject><subject>long-term time series</subject><subject>Mathematical models</subject><subject>Missions</subject><subject>Radar</subject><subject>Remote sensing</subject><subject>Satellite altimetry</subject><subject>satellite radar altimetry</subject><subject>Satellites</subject><subject>Time series</subject><subject>Topography</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtLAzEQhRdRsKgv_oKAb8JqMrns5rGUqhVB8PIoYTbJtlvaTU1Sof_e1Yo6LzMMh2_OcIrinNErzjW9jokBAK-EOihGQCsoBWg4_DcfF2cpLelQnDNNxah4m678B-Yu9GSywH7uEwktyQtPxn3GaHNnycx68rzwPpM2hjW5D12fybT_6BJmgr0jk7gLz5hLIE_oMJLxKndrn-PutDhqcZX82U8_KV5vpi-Tu_Lh8XY2GT-UliuWy4ZCRQePYKWjCNByidIz5YSAWtoalKqYFFJp19S8alyNbaNaiZqilM7zk2K257qAS7OJ3RrjzgTszPcixLnBOLyy8gbQC2Udeo1WVKi11Q51S22jHWUeBtbFnrWJ4X3rUzbLsI39YN-AUKzmWik2qC73KhtDStG3v1cZNV9pmL80-CeCgHrj</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Zhang, Baojun</creator><creator>Wang, Zemin</creator><creator>Yang, Quanming</creator><creator>Liu, Jingbin</creator><creator>An, Jiachun</creator><creator>Li, Fei</creator><creator>Liu, Tingting</creator><creator>Geng, Hong</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3106-0714</orcidid><orcidid>https://orcid.org/0000-0001-5438-8723</orcidid></search><sort><creationdate>20201101</creationdate><title>Elevation Changes of the Antarctic Ice Sheet from Joint Envisat and CryoSat-2 Radar Altimetry</title><author>Zhang, Baojun ; Wang, Zemin ; Yang, Quanming ; Liu, Jingbin ; An, Jiachun ; Li, Fei ; Liu, Tingting ; Geng, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-b02700722c5d0a22f35a5e16d44285c82667154569db837bd8afb6f5a90a55de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Airborne lasers</topic><topic>Altimeters</topic><topic>Antarctic ice sheet</topic><topic>Bias</topic><topic>Climate change</topic><topic>Densification</topic><topic>elevation changes</topic><topic>Firn</topic><topic>Glaciers</topic><topic>Ice</topic><topic>Ice sheets</topic><topic>Lasers</topic><topic>long-term time series</topic><topic>Mathematical models</topic><topic>Missions</topic><topic>Radar</topic><topic>Remote sensing</topic><topic>Satellite altimetry</topic><topic>satellite radar altimetry</topic><topic>Satellites</topic><topic>Time series</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Baojun</creatorcontrib><creatorcontrib>Wang, Zemin</creatorcontrib><creatorcontrib>Yang, Quanming</creatorcontrib><creatorcontrib>Liu, Jingbin</creatorcontrib><creatorcontrib>An, Jiachun</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Liu, Tingting</creatorcontrib><creatorcontrib>Geng, Hong</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Baojun</au><au>Wang, Zemin</au><au>Yang, Quanming</au><au>Liu, Jingbin</au><au>An, Jiachun</au><au>Li, Fei</au><au>Liu, Tingting</au><au>Geng, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elevation Changes of the Antarctic Ice Sheet from Joint Envisat and CryoSat-2 Radar Altimetry</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>12</volume><issue>22</issue><spage>3746</spage><pages>3746-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>The elevation changes of ice sheets have been recognized as an essential climate variable. Long-term time series of these changes are an important parameter to understand climate change, and the longest time-series of ice sheet elevation changes can be derived from combining multiple Ku-band satellite altimetry missions. However, unresolved intermission biases obscure the record. Here, we revise the mathematical model commonly used in the literature to simultaneously correct for intermission bias and ascending–descending bias to ensure the self-consistency and cohesion of the elevation time series across missions. This updated approach is applied to combine Envisat and CryoSat-2 radar altimetry in the period of 2002–2019. We tested this approach by validating it against airborne and satellite laser altimetry. Combining the detailed temporal and spatial evolution of elevation changes with firn densification-modeled volume changes due to surface processes, we found that the Amundsen Sea sector accounts for most of the total volume loss of the Antarctic Ice Sheet (AIS), mainly from ice dynamics. However, surface processes dominate the volume changes in the key regions, such as the Totten Glacier sector, Dronning Maud Land, Princess Elizabeth Land, and the Bellingshausen Sea sector. Overall, accelerated volume loss in the West Antarctic continues to outpace the gains observed in the East Antarctic. The total volume change during 2002–2019 for the AIS was −68.7 ± 8.1 km3/y, with an acceleration of −5.5 ± 0.9 km3/y2.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs12223746</doi><orcidid>https://orcid.org/0000-0002-3106-0714</orcidid><orcidid>https://orcid.org/0000-0001-5438-8723</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2020-11, Vol.12 (22), p.3746
issn 2072-4292
2072-4292
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2ae46cdae9ac47a99c9da9f0cb9d01e2
source Publicly Available Content Database
subjects Airborne lasers
Altimeters
Antarctic ice sheet
Bias
Climate change
Densification
elevation changes
Firn
Glaciers
Ice
Ice sheets
Lasers
long-term time series
Mathematical models
Missions
Radar
Remote sensing
Satellite altimetry
satellite radar altimetry
Satellites
Time series
Topography
title Elevation Changes of the Antarctic Ice Sheet from Joint Envisat and CryoSat-2 Radar Altimetry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A14%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elevation%20Changes%20of%20the%20Antarctic%20Ice%20Sheet%20from%20Joint%20Envisat%20and%20CryoSat-2%20Radar%20Altimetry&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Zhang,%20Baojun&rft.date=2020-11-01&rft.volume=12&rft.issue=22&rft.spage=3746&rft.pages=3746-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs12223746&rft_dat=%3Cproquest_doaj_%3E2461839661%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-b02700722c5d0a22f35a5e16d44285c82667154569db837bd8afb6f5a90a55de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2461839661&rft_id=info:pmid/&rfr_iscdi=true