Loading…

Barren plateaus in quantum neural network training landscapes

Many experimental proposals for noisy intermediate scale quantum devices involve training a parameterized quantum circuit with a classical optimization loop. Such hybrid quantum-classical algorithms are popular for applications in quantum simulation, optimization, and machine learning. Due to its si...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2018-11, Vol.9 (1), p.4812-6, Article 4812
Main Authors: McClean, Jarrod R., Boixo, Sergio, Smelyanskiy, Vadim N., Babbush, Ryan, Neven, Hartmut
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many experimental proposals for noisy intermediate scale quantum devices involve training a parameterized quantum circuit with a classical optimization loop. Such hybrid quantum-classical algorithms are popular for applications in quantum simulation, optimization, and machine learning. Due to its simplicity and hardware efficiency, random circuits are often proposed as initial guesses for exploring the space of quantum states. We show that the exponential dimension of Hilbert space and the gradient estimation complexity make this choice unsuitable for hybrid quantum-classical algorithms run on more than a few qubits. Specifically, we show that for a wide class of reasonable parameterized quantum circuits, the probability that the gradient along any reasonable direction is non-zero to some fixed precision is exponentially small as a function of the number of qubits. We argue that this is related to the 2-design characteristic of random circuits, and that solutions to this problem must be studied. Gradient-based hybrid quantum-classical algorithms are often initialised with random, unstructured guesses. Here, the authors show that this approach will fail in the long run, due to the exponentially-small probability of finding a large enough gradient along any direction.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-07090-4