Loading…

Jerusalem Artichoke as a Raw Material for Manufacturing Alternative Fuels for Gasoline Internal Combustion Engines

The Jerusalem artichoke (Helianthus tuberosus) is a high-yield crop, and a great source of fermentable sugars, which gives the plant the potential to be used as raw material for economical fuel alcohol production. In this article, the authors focus on the technological aspect of the biofuel manufact...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2024-05, Vol.17 (10), p.2378
Main Authors: Bembenek, Michał, Melnyk, Vasyl, Karwat, Bolesław, Hnyp, Mariia, Kowalski, Łukasz, Mosora, Yurii
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c359t-3f4081a1aeaa3f954f04807de59197ca3a7984fe268a49799b32e300bc480ed03
container_end_page
container_issue 10
container_start_page 2378
container_title Energies (Basel)
container_volume 17
creator Bembenek, Michał
Melnyk, Vasyl
Karwat, Bolesław
Hnyp, Mariia
Kowalski, Łukasz
Mosora, Yurii
description The Jerusalem artichoke (Helianthus tuberosus) is a high-yield crop, and a great source of fermentable sugars, which gives the plant the potential to be used as raw material for economical fuel alcohol production. In this article, the authors focus on the technological aspect of the biofuel manufacturing process and its properties. First, the fuel alcohol manufacturing process is described, afterwards assessing its characteristics such as kinematic viscosity, density and octane number. The amount of fuel alcohol obtained from 10 kg of biomass equals to 0.85 L. Afterwards, the mixtures of gasoline and obtained fuel alcohol are prepared and studied. Optimal alcohol and gasoline mixtures are determined to obtain biofuels with octane ratings of 92, 95 and 98. The kinematic viscosity of obtained mixtures does not differ significantly from its values for pure gasoline. The obtained biofuel mixture with 25% alcohol content yielded a decrease of sulfur content by 38%, an increase of vaporized fuel amount by 17.5% at 70 °C and by 10.5% at a temperature of 100 °C, which improves engine startup time and ensures its stable operation in comparison to pure gasoline. The alcohol obtained can be successfully used as a high-octane additive for gasolines.
doi_str_mv 10.3390/en17102378
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2d70916ca59e465d81bc23c52f3cb955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A795403382</galeid><doaj_id>oai_doaj_org_article_2d70916ca59e465d81bc23c52f3cb955</doaj_id><sourcerecordid>A795403382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-3f4081a1aeaa3f954f04807de59197ca3a7984fe268a49799b32e300bc480ed03</originalsourceid><addsrcrecordid>eNpNUV1v3CAQtKpUapTkpb8AKW-VLgWvMebxdMrHVYkiVe0zWuPlysUHKdiJ8u_L3VVt4IFlZ3bEMFX1WfArAM2_UhBK8BpU96E6FVq3C8EVnLyrP1UXOW95WQACAE6r9I3SnHGkHVumydtf8YkYZobsO76yB5woeRyZi6lcwuzQTnPyYcOWY4ECTv6F2M1MYz5wbjHH0Qdi63CAR7aKu37Ok4-BXYdNgfJ59dHhmOni73lW_by5_rG6W9w_3q5Xy_uFBamnBbiGdwIFEiI4LRvHm46rgaQWWlkEVLprHNVth41WWvdQE3De20KjgcNZtT7qDhG35jn5HaY3E9GbQyOmjcG95ZFMPSiuRWtRampaOXSitzVYWTuwvZayaF0etZ5T_D1Tnsw2znt_2QCXuinjvC2sqyNrUz7U-ODilNCWPdDO2xjI-dJfqmKmBNDVZeDLccCmmHMi9--Zgpt9puZ_pvAHye6S3Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059470906</pqid></control><display><type>article</type><title>Jerusalem Artichoke as a Raw Material for Manufacturing Alternative Fuels for Gasoline Internal Combustion Engines</title><source>Publicly Available Content Database</source><creator>Bembenek, Michał ; Melnyk, Vasyl ; Karwat, Bolesław ; Hnyp, Mariia ; Kowalski, Łukasz ; Mosora, Yurii</creator><creatorcontrib>Bembenek, Michał ; Melnyk, Vasyl ; Karwat, Bolesław ; Hnyp, Mariia ; Kowalski, Łukasz ; Mosora, Yurii</creatorcontrib><description>The Jerusalem artichoke (Helianthus tuberosus) is a high-yield crop, and a great source of fermentable sugars, which gives the plant the potential to be used as raw material for economical fuel alcohol production. In this article, the authors focus on the technological aspect of the biofuel manufacturing process and its properties. First, the fuel alcohol manufacturing process is described, afterwards assessing its characteristics such as kinematic viscosity, density and octane number. The amount of fuel alcohol obtained from 10 kg of biomass equals to 0.85 L. Afterwards, the mixtures of gasoline and obtained fuel alcohol are prepared and studied. Optimal alcohol and gasoline mixtures are determined to obtain biofuels with octane ratings of 92, 95 and 98. The kinematic viscosity of obtained mixtures does not differ significantly from its values for pure gasoline. The obtained biofuel mixture with 25% alcohol content yielded a decrease of sulfur content by 38%, an increase of vaporized fuel amount by 17.5% at 70 °C and by 10.5% at a temperature of 100 °C, which improves engine startup time and ensures its stable operation in comparison to pure gasoline. The alcohol obtained can be successfully used as a high-octane additive for gasolines.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en17102378</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agricultural production ; Alcohol ; Algae ; Alternative energy sources ; Biodiesel fuels ; bioethanol ; biofuel ; Biofuels ; Biomass ; biomass conversion ; Biomass energy ; Cellulose ; Combustion ; Crops ; Efficiency ; Energy resources ; Engines ; Enzymes ; Ethanol ; Fermentation ; green energy ; internal combustion ; Internal combustion engines ; Lignin ; Lignocellulose ; Manufacturing ; Production processes ; Raw materials ; Renewable resources ; Sulfur compounds ; Temperature ; Yeast</subject><ispartof>Energies (Basel), 2024-05, Vol.17 (10), p.2378</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-3f4081a1aeaa3f954f04807de59197ca3a7984fe268a49799b32e300bc480ed03</cites><orcidid>0000-0002-5793-5486 ; 0000-0002-2866-9000 ; 0000-0002-7665-8058 ; 0000-0003-3662-0941 ; 0000-0002-3192-7146</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3059470906/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3059470906?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25735,27906,27907,36994,44572,74876</link.rule.ids></links><search><creatorcontrib>Bembenek, Michał</creatorcontrib><creatorcontrib>Melnyk, Vasyl</creatorcontrib><creatorcontrib>Karwat, Bolesław</creatorcontrib><creatorcontrib>Hnyp, Mariia</creatorcontrib><creatorcontrib>Kowalski, Łukasz</creatorcontrib><creatorcontrib>Mosora, Yurii</creatorcontrib><title>Jerusalem Artichoke as a Raw Material for Manufacturing Alternative Fuels for Gasoline Internal Combustion Engines</title><title>Energies (Basel)</title><description>The Jerusalem artichoke (Helianthus tuberosus) is a high-yield crop, and a great source of fermentable sugars, which gives the plant the potential to be used as raw material for economical fuel alcohol production. In this article, the authors focus on the technological aspect of the biofuel manufacturing process and its properties. First, the fuel alcohol manufacturing process is described, afterwards assessing its characteristics such as kinematic viscosity, density and octane number. The amount of fuel alcohol obtained from 10 kg of biomass equals to 0.85 L. Afterwards, the mixtures of gasoline and obtained fuel alcohol are prepared and studied. Optimal alcohol and gasoline mixtures are determined to obtain biofuels with octane ratings of 92, 95 and 98. The kinematic viscosity of obtained mixtures does not differ significantly from its values for pure gasoline. The obtained biofuel mixture with 25% alcohol content yielded a decrease of sulfur content by 38%, an increase of vaporized fuel amount by 17.5% at 70 °C and by 10.5% at a temperature of 100 °C, which improves engine startup time and ensures its stable operation in comparison to pure gasoline. The alcohol obtained can be successfully used as a high-octane additive for gasolines.</description><subject>Agricultural production</subject><subject>Alcohol</subject><subject>Algae</subject><subject>Alternative energy sources</subject><subject>Biodiesel fuels</subject><subject>bioethanol</subject><subject>biofuel</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>biomass conversion</subject><subject>Biomass energy</subject><subject>Cellulose</subject><subject>Combustion</subject><subject>Crops</subject><subject>Efficiency</subject><subject>Energy resources</subject><subject>Engines</subject><subject>Enzymes</subject><subject>Ethanol</subject><subject>Fermentation</subject><subject>green energy</subject><subject>internal combustion</subject><subject>Internal combustion engines</subject><subject>Lignin</subject><subject>Lignocellulose</subject><subject>Manufacturing</subject><subject>Production processes</subject><subject>Raw materials</subject><subject>Renewable resources</subject><subject>Sulfur compounds</subject><subject>Temperature</subject><subject>Yeast</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1v3CAQtKpUapTkpb8AKW-VLgWvMebxdMrHVYkiVe0zWuPlysUHKdiJ8u_L3VVt4IFlZ3bEMFX1WfArAM2_UhBK8BpU96E6FVq3C8EVnLyrP1UXOW95WQACAE6r9I3SnHGkHVumydtf8YkYZobsO76yB5woeRyZi6lcwuzQTnPyYcOWY4ECTv6F2M1MYz5wbjHH0Qdi63CAR7aKu37Ok4-BXYdNgfJ59dHhmOni73lW_by5_rG6W9w_3q5Xy_uFBamnBbiGdwIFEiI4LRvHm46rgaQWWlkEVLprHNVth41WWvdQE3De20KjgcNZtT7qDhG35jn5HaY3E9GbQyOmjcG95ZFMPSiuRWtRampaOXSitzVYWTuwvZayaF0etZ5T_D1Tnsw2znt_2QCXuinjvC2sqyNrUz7U-ODilNCWPdDO2xjI-dJfqmKmBNDVZeDLccCmmHMi9--Zgpt9puZ_pvAHye6S3Q</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Bembenek, Michał</creator><creator>Melnyk, Vasyl</creator><creator>Karwat, Bolesław</creator><creator>Hnyp, Mariia</creator><creator>Kowalski, Łukasz</creator><creator>Mosora, Yurii</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5793-5486</orcidid><orcidid>https://orcid.org/0000-0002-2866-9000</orcidid><orcidid>https://orcid.org/0000-0002-7665-8058</orcidid><orcidid>https://orcid.org/0000-0003-3662-0941</orcidid><orcidid>https://orcid.org/0000-0002-3192-7146</orcidid></search><sort><creationdate>20240501</creationdate><title>Jerusalem Artichoke as a Raw Material for Manufacturing Alternative Fuels for Gasoline Internal Combustion Engines</title><author>Bembenek, Michał ; Melnyk, Vasyl ; Karwat, Bolesław ; Hnyp, Mariia ; Kowalski, Łukasz ; Mosora, Yurii</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-3f4081a1aeaa3f954f04807de59197ca3a7984fe268a49799b32e300bc480ed03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural production</topic><topic>Alcohol</topic><topic>Algae</topic><topic>Alternative energy sources</topic><topic>Biodiesel fuels</topic><topic>bioethanol</topic><topic>biofuel</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>biomass conversion</topic><topic>Biomass energy</topic><topic>Cellulose</topic><topic>Combustion</topic><topic>Crops</topic><topic>Efficiency</topic><topic>Energy resources</topic><topic>Engines</topic><topic>Enzymes</topic><topic>Ethanol</topic><topic>Fermentation</topic><topic>green energy</topic><topic>internal combustion</topic><topic>Internal combustion engines</topic><topic>Lignin</topic><topic>Lignocellulose</topic><topic>Manufacturing</topic><topic>Production processes</topic><topic>Raw materials</topic><topic>Renewable resources</topic><topic>Sulfur compounds</topic><topic>Temperature</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bembenek, Michał</creatorcontrib><creatorcontrib>Melnyk, Vasyl</creatorcontrib><creatorcontrib>Karwat, Bolesław</creatorcontrib><creatorcontrib>Hnyp, Mariia</creatorcontrib><creatorcontrib>Kowalski, Łukasz</creatorcontrib><creatorcontrib>Mosora, Yurii</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bembenek, Michał</au><au>Melnyk, Vasyl</au><au>Karwat, Bolesław</au><au>Hnyp, Mariia</au><au>Kowalski, Łukasz</au><au>Mosora, Yurii</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Jerusalem Artichoke as a Raw Material for Manufacturing Alternative Fuels for Gasoline Internal Combustion Engines</atitle><jtitle>Energies (Basel)</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>17</volume><issue>10</issue><spage>2378</spage><pages>2378-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>The Jerusalem artichoke (Helianthus tuberosus) is a high-yield crop, and a great source of fermentable sugars, which gives the plant the potential to be used as raw material for economical fuel alcohol production. In this article, the authors focus on the technological aspect of the biofuel manufacturing process and its properties. First, the fuel alcohol manufacturing process is described, afterwards assessing its characteristics such as kinematic viscosity, density and octane number. The amount of fuel alcohol obtained from 10 kg of biomass equals to 0.85 L. Afterwards, the mixtures of gasoline and obtained fuel alcohol are prepared and studied. Optimal alcohol and gasoline mixtures are determined to obtain biofuels with octane ratings of 92, 95 and 98. The kinematic viscosity of obtained mixtures does not differ significantly from its values for pure gasoline. The obtained biofuel mixture with 25% alcohol content yielded a decrease of sulfur content by 38%, an increase of vaporized fuel amount by 17.5% at 70 °C and by 10.5% at a temperature of 100 °C, which improves engine startup time and ensures its stable operation in comparison to pure gasoline. The alcohol obtained can be successfully used as a high-octane additive for gasolines.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en17102378</doi><orcidid>https://orcid.org/0000-0002-5793-5486</orcidid><orcidid>https://orcid.org/0000-0002-2866-9000</orcidid><orcidid>https://orcid.org/0000-0002-7665-8058</orcidid><orcidid>https://orcid.org/0000-0003-3662-0941</orcidid><orcidid>https://orcid.org/0000-0002-3192-7146</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2024-05, Vol.17 (10), p.2378
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2d70916ca59e465d81bc23c52f3cb955
source Publicly Available Content Database
subjects Agricultural production
Alcohol
Algae
Alternative energy sources
Biodiesel fuels
bioethanol
biofuel
Biofuels
Biomass
biomass conversion
Biomass energy
Cellulose
Combustion
Crops
Efficiency
Energy resources
Engines
Enzymes
Ethanol
Fermentation
green energy
internal combustion
Internal combustion engines
Lignin
Lignocellulose
Manufacturing
Production processes
Raw materials
Renewable resources
Sulfur compounds
Temperature
Yeast
title Jerusalem Artichoke as a Raw Material for Manufacturing Alternative Fuels for Gasoline Internal Combustion Engines
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A00%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Jerusalem%20Artichoke%20as%20a%20Raw%20Material%20for%20Manufacturing%20Alternative%20Fuels%20for%20Gasoline%20Internal%20Combustion%20Engines&rft.jtitle=Energies%20(Basel)&rft.au=Bembenek,%20Micha%C5%82&rft.date=2024-05-01&rft.volume=17&rft.issue=10&rft.spage=2378&rft.pages=2378-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en17102378&rft_dat=%3Cgale_doaj_%3EA795403382%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-3f4081a1aeaa3f954f04807de59197ca3a7984fe268a49799b32e300bc480ed03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3059470906&rft_id=info:pmid/&rft_galeid=A795403382&rfr_iscdi=true