Loading…

On some hydrodynamical aspects of quantum mechanics

In this note we first set up an analogy between spin and vorticity of a perfect 2d-fluid flow, based on the complex polynomial ( i.e. Borel-Weil) realization of the irreducible unitary representations of SU (2), and looking at the Madelung-Bohm velocity attached to the ensuing spin wave functions. W...

Full description

Saved in:
Bibliographic Details
Published in:Central European journal of physics 2010-02, Vol.8 (1), p.42-48
Main Author: Spera, Mauro
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this note we first set up an analogy between spin and vorticity of a perfect 2d-fluid flow, based on the complex polynomial ( i.e. Borel-Weil) realization of the irreducible unitary representations of SU (2), and looking at the Madelung-Bohm velocity attached to the ensuing spin wave functions. We also show that, in the framework of finite dimensional geometric quantum mechanics, the Schrödinger velocity field on projective Hilbert space is divergence-free (being Killing with respect to the Fubini-Study metric) and fulfils the stationary Euler equation, with pressure proportional to the Hamiltonian uncertainty (squared). We explicitly determine the critical points of the pressure of this “Schrödinger fluid”, together with its vorticity, which turns out to depend on the spacings of the energy levels. These results follow from hydrodynamical properties of Killing vector fields valid in any (finite dimensional) Riemannian manifold, of possible independent interest.
ISSN:1895-1082
2391-5471
1644-3608
2391-5471
DOI:10.2478/s11534-009-0070-4