Loading…
Extremality of Disordered Phase of λ-Model on Cayley Trees
In this paper, we consider the λ-model for an arbitrary-order Cayley tree that has a disordered phase. Such a phase corresponds to a splitting Gibbs measure with free boundary conditions. In communication theory, such a measure appears naturally, and its extremality is related to the solvability of...
Saved in:
Published in: | Algorithms 2022-01, Vol.15 (1), p.18 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we consider the λ-model for an arbitrary-order Cayley tree that has a disordered phase. Such a phase corresponds to a splitting Gibbs measure with free boundary conditions. In communication theory, such a measure appears naturally, and its extremality is related to the solvability of the non-reconstruction problem. In general, the disordered phase is not extreme; hence, it is natural to find a condition for their extremality. In the present paper, we present certain conditions for the extremality of the disordered phase of the λ-model. |
---|---|
ISSN: | 1999-4893 1999-4893 |
DOI: | 10.3390/a15010018 |