Loading…

Organocatalytic desymmetrization provides access to planar chiral [2.2]paracyclophanes

Planar chiral [2.2]paracyclophanes consist of two functionalized benzene rings connected by two ethylene bridges. These organic compounds have a wide range of applications in asymmetric synthesis, as both ligands and catalysts, and in materials science, as polymers, energy materials and dyes. Howeve...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2024-04, Vol.15 (1), p.3090-3090, Article 3090
Main Authors: Dočekal, Vojtěch, Koucký, Filip, Císařová, Ivana, Veselý, Jan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Planar chiral [2.2]paracyclophanes consist of two functionalized benzene rings connected by two ethylene bridges. These organic compounds have a wide range of applications in asymmetric synthesis, as both ligands and catalysts, and in materials science, as polymers, energy materials and dyes. However, these molecules can only be accessed by enantiomer separation via (a) time-consuming chiral separations and (b) kinetic resolution approaches, often with a limited substrate scope, yielding both enantiomers. Here, we report a simple, efficient, metal-free protocol for organocatalytic desymmetrization of prochiral diformyl[2.2]paracyclophanes. Our detailed experimental mechanistic study highlights differences in the origin of enantiocontrol of pseudo - para and pseudo-gem diformyl derivatives in NHC catalyzed desymmetrizations based on whether a key Breslow intermediate is irreversibly or reversibly formed in this process. This gram-scale reaction enables a wide range of follow-up derivatizations of carbonyl groups, producing various enantiomerically pure planar chiral [2.2]paracyclophane derivatives, thereby underscoring the potential of this method. Planar chiral [2.2]paracyclophanes have a wide range of applications in asymmetric synthesis and materials science. However, they are accessed via time-consuming chiral separations or kinetic resolution approaches. Here, the authors report a simple, metal-free protocol for organocatalytic desymmetrization of prochiral diformyl[2.2]paracyclophanes.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-47407-0