Loading…

A Novel Linear Model Based on Code Approximation for GNSS/INS Ultra-Tight Integration System

The superiority of a global navigation satellite system (GNSS)/inertial navigation system (INS) ultra-tight integration navigation system has been widely verified. For those systems with centralized structure based on coherent-accumulation measurements (I/Q), the conversion from I/Q signals to navig...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2020-06, Vol.20 (11), p.3192
Main Authors: Yan, Zhe, Chen, Xiyuan, Tang, Xinhua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The superiority of a global navigation satellite system (GNSS)/inertial navigation system (INS) ultra-tight integration navigation system has been widely verified. For those systems with centralized structure based on coherent-accumulation measurements (I/Q), the conversion from I/Q signals to navigation information is implemented by an observation equation. As a result, the model is highly complex and nonlinear, exerting essential influence on system performance. Based on the analysis of previous studies, a novel model and its linearization method are proposed, aiming at the integrity, stability and implicit nonlinear factors. Unlike the one-order precision in the common Jacobian matrix, two-order components are partly reserved in this model, which makes it possible for higher positioning accuracy and better convergence. For the positioning errors caused by ignoring code-loop deviation, a method to approximate code-phase is proposed without introducing new measurements. Consequently, the effect of code error can be significantly reduced, especially when the tracking loops are unstable. In the end, using real-sampled satellite signals, semi-physical experiments are carried out and the effectiveness and superiority of new methods are proved.
ISSN:1424-8220
1424-8220
DOI:10.3390/s20113192