Loading…

Omnidirectional Continuous Movement Method of Dual-Arm Robot in a Space Station

The burgeoning complexity of space missions has amplified the research focus on robots that are capable of assisting astronauts in accomplishing tasks within space stations. Nevertheless, these robots grapple with substantial mobility challenges in a weightless environment. This study proposed an om...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2023-05, Vol.23 (11), p.5025
Main Authors: Zhang, Ziqiang, Wang, Zhi, Zhou, Zhenyong, Li, Haozhe, Zhang, Qiang, Zhou, Yuanzi, Li, Xiaohui, Liu, Weihui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The burgeoning complexity of space missions has amplified the research focus on robots that are capable of assisting astronauts in accomplishing tasks within space stations. Nevertheless, these robots grapple with substantial mobility challenges in a weightless environment. This study proposed an omnidirectional continuous movement method for a dual-arm robot, inspired by the movement patterns of astronauts within space stations. On the basis of determining the configuration of the dual-arm robot, the kinematics and dynamics model of the robot during contact and flight phases were established. Thereafter, several constraints are determined, including obstacle constraints, prohibited contact area constraints, and performance constraints. An optimization algorithm based on the artificial bee colony algorithm was proposed to optimize the trunk motion law, contact point positions between the manipulators and the inner wall, as well as the driving torques. Through the real-time control of the two manipulators, the robot is capable of achieving omnidirectional continuous movement across various inner walls with complex structures while maintaining optimal comprehensive performance. Simulation results demonstrate the correctness of this method. The method proposed in this paper provides a theoretical basis for the application of mobile robots within space stations.
ISSN:1424-8220
1424-8220
DOI:10.3390/s23115025