Loading…
Some fixed point results concerning various contractions in extended b- metric space endowed with a graph
Contraction type mappings are crucial for understanding fixed point theory under specific conditions. We propose generalized (Boyd–Wong) type A F and (S - N) rational type contractions in an enlarged b-metric space which are represented by a graphically. Also, we gave a contrast of generalized (Boyd...
Saved in:
Published in: | Results in applied mathematics 2025-03, Vol.25, p.100524, Article 100524 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Contraction type mappings are crucial for understanding fixed point theory under specific conditions. We propose generalized (Boyd–Wong) type A F and (S - N) rational type contractions in an enlarged b-metric space which are represented by a graphically. Also, we gave a contrast of generalized (Boyd–Wong) type A F — contraction in 2D and 3D. We use appropriate illustrations to demonstrate the validity and primacy of our outcomes. Additionally, we use our derived conclusions to solve the Fredholm integral problem. |
---|---|
ISSN: | 2590-0374 2590-0374 |
DOI: | 10.1016/j.rinam.2024.100524 |