Loading…
An investigation into a semi-porous channel's forced convection of nano fluid in the presence of a magnetic field as a result of heat radiation
This study investigates the impact of heat radiation on magnetically-induced forced convection of nanofluid in a semi-porous channel. The research employs Akbari-Ganji's and Homotopy perturbation methods to analyze the effects of multiple parameters, including Hartmann number, Reynolds number,...
Saved in:
Published in: | Scientific reports 2023-10, Vol.13 (1), p.18505-18505, Article 18505 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study investigates the impact of heat radiation on magnetically-induced forced convection of nanofluid in a semi-porous channel. The research employs Akbari-Ganji's and Homotopy perturbation methods to analyze the effects of multiple parameters, including Hartmann number, Reynolds number, Eckert number, radiation parameter, and suction parameter, on the flow and heat transfer characteristics. The results demonstrate that increasing Reynolds number, suction, and radiation parameters increases temperature gradient, providing valuable insights into improving heat transfer in semi-porous channels. The study validates the proposed methods by comparing the results with those obtained from other established methods in the literature. The main focus of this work is to understand the behavior of nanofluids in semi-porous channels under the influence of magnetic fields and heat radiation, which is essential for various industrial and engineering applications. The future direction of this research includes exploring the effects of different nanoparticle shapes and materials on heat transfer performance and investigating the influence of other parameters, such as buoyancy forces and variable properties, on the flow and heat transfer characteristics. The findings of this study are expected to contribute to the development of more efficient thermal management systems in the future. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-44275-4 |