Loading…

The Prediction of Pile Foundation Buried Depth Based on BP Neural Network Optimized by Quantum Particle Swarm Optimization

Due to the fluctuation of the bearing stratum and the distinct properties of the soil layer, the buried depth of the pile foundation will differ from each other as well. In practical construction, since the designed pile length is not definitely consistent with the actual pile length, masses of pile...

Full description

Saved in:
Bibliographic Details
Published in:Advances in civil engineering 2021-06, Vol.2021 (1)
Main Authors: Yin, Fei, Hao, Yong, Xiao, Taoli, Shao, Yan, Yuan, Man
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Due to the fluctuation of the bearing stratum and the distinct properties of the soil layer, the buried depth of the pile foundation will differ from each other as well. In practical construction, since the designed pile length is not definitely consistent with the actual pile length, masses of piles will be required to be cut off or supplemented, resulting in huge cost waste and potential safety hazards. Accordingly, the prediction of pile foundation buried depth is of great significance in construction engineering. In this paper, a nonlinear model based on coordinates and buried depth of piles was established by the BP neural network to predict the samples to be evaluated, the consequence of which indicated that the BP neural network was easily trapped in local extreme value, and the error reached 31%. Afterwards, the QPSO algorithm was proposed to optimize the weights and thresholds of the BP network, which showed that the minimum error of QPSO-BP was merely 9.4% in predicting the depth of bearing stratum and 2.9% in predicting the buried depth of pile foundation. Besides, this paper compared QPSO-BP with three other robust models referred to as FWA-BP, PSO-BP, and BP by three statistical tests (RMSE, MAE, and MAPE). The accuracy of the QPSO-BP algorithm was the highest, which demonstrated the superiority of QPSO-BP in practical engineering.
ISSN:1687-8086
1687-8094
DOI:10.1155/2021/2015408