Loading…
Acid-Modulated Peptide Synthesis for Application on Oxide Biosensor Interfaces
In this paper we report an acid-modulated strategy for novel peptide microarray production on biosensor interfaces. We initially selected a controlled pore glass (CPG) as a support for solid-phase peptide synthesis (SPPS) to implement a chemistry that can be performed at the interface of multiple fi...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2023-12, Vol.13 (24), p.3092 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we report an acid-modulated strategy for novel peptide microarray production on biosensor interfaces. We initially selected a controlled pore glass (CPG) as a support for solid-phase peptide synthesis (SPPS) to implement a chemistry that can be performed at the interface of multiple field effect transistor (FET) sensors, eventually to generate label-free peptide microarrays for protein screening. Our chemistry uses a temporary protection of the N-terminal amino function of each amino acid building block with a tert-butyloxycarbonyl (Boc) group that can be removed after each SPPS cycle, in combination with semi-permanent protection of the side chains of trifunctional amino acid residues. Such a protection scheme with a well-proven record of application in conventional, batchwise SPPS has been fine-tuned for optimal performance on CPG and, from there, translated to SPR chips that allow layer-by-layer monitoring of amino acid coupling. Our results validate this acid-modulated synthesis as a feasible approach for producing peptides in high yields and purity on flat glass surfaces, such as those in bio-FETs. |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano13243092 |