Loading…

Force and Pressure Dependent Asymmetric Workspace Research of a Collaborative Robot and Human

This article discusses creating a methodology for the asymmetric measuring of values and processes of collision forces and pressures of the collaborative robot dependent on time. Furthermore, it verifies the usefulness of this methodology in practice by successfully performing the experimental measu...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) 2024-01, Vol.16 (1), p.131
Main Authors: Ponikelský, Josef, Chalupa, Milan, Černohlávek, Vít, Štěrba, Jan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article discusses creating a methodology for the asymmetric measuring of values and processes of collision forces and pressures of the collaborative robot dependent on time. Furthermore, it verifies the usefulness of this methodology in practice by successfully performing the experimental measurement and verifying the possibility of using these results by analysing and stating the collaboration level for a robot of the given type. According to the suggested methodology, the measurement results are a specific output based on real measured data, which can be easily rated and can quickly determine the collaborative level of any robot. Measurements were aimed at determining the values of pressure and force with which the robot acts at certain speeds related to distance from the base. Due to the controlled symmetrical impact of the robot on the measuring device, the transfer of energy from the robot to the human body was guaranteed. In theoretical terms, this article primarily provides the assembly of the theoretical foundation of the collaborative environment between humans and robots, and a comprehensive overview of the possibilities of using the technical specification ISO/TS 15066:2016 when deploying a robot in collaboration with humans in a collaborative environment. This new information is highly valuable for both manufacturers and users of collaborative robots. The presented article analyses the possibilities of measuring collaboration and safety elements in cooperation with a robot. The most significant practical benefit is the presentation of a methodology for measuring robot collaboration and verifying its functionality by conducting experimental measurements of robot collaboration according to this methodology. The measurement was performed on a robot made by Universal Robots, model UR10. The measurement coordinates were stationed in a way to create a spatial measurement model. Boundary coordinates of the spatial model were as follows: [450; 200], [450; 500], [850; 200], and [850; 500]. Collisions were measured at 8 different speeds for each coordinate (20 mms−1, 50 mms−1, 100 mms−1, 200 mms−1, 250 mms−1, 300 mms−1, 350 mms−1, and 400 mms−1) to enable the observation of changes in accordance with speed. The measured values indicate a significant fact: the closer the collision is to the robot’s base, the higher the collision forces. An important aspect is that the measured values were only for speeds up to 400 mms−1, which is a very low value for
ISSN:2073-8994
2073-8994
DOI:10.3390/sym16010131