Loading…

Core Collections: Is There Any Value for Cotton Breeding?

Global plant breeding activities are reliant on the available genetic variation held in extant varieties and germplasm collections. Throughout the mid- to late 1900s, germplasm collecting efforts were prioritized for breeding programs to archive precious material before it disappeared and led to the...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in plant science 2022-04, Vol.13, p.895155-895155
Main Authors: Egan, Lucy Marie, Conaty, Warren Charles, Stiller, Warwick Nigel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Global plant breeding activities are reliant on the available genetic variation held in extant varieties and germplasm collections. Throughout the mid- to late 1900s, germplasm collecting efforts were prioritized for breeding programs to archive precious material before it disappeared and led to the development of the numerous large germplasm resources now available in different countries. In recent decades, however, the maintenance and particularly the expansion of these germplasm resources have come under threat, and there has been a significant decline in investment in further collecting expeditions, an increase in global biosecurity restrictions, and restrictions placed on the open exchange of some commercial germplasm between breeders. The large size of most genebank collections, as well as constraints surrounding the availability and reliability of accurate germplasm passport data and physical or genetic characterization of the accessions in collections, limits germplasm utilization by plant breeders. To overcome these constraints, core collections, defined as a representative subset of the total germplasm collection, have gained popularity. Core collections aim to increase germplasm utilization by containing highly characterized germplasm that attempts to capture the majority of the variation in a whole collection. With the recent availability of many new genetic tools, the potential to unlock the value of these resources can now be realized. The Commonwealth Scientific and Industrial Research Organisation (CSIRO) cotton breeding program supplies 100% of the cotton cultivars grown in Australia. The program is reliant on the use of plant genetic resources for the development of improved cotton varieties to address emerging challenges in pest and disease resistance as well as the global changes occurring in the climate. Currently, the CSIRO germplasm collection is actively maintained but underutilized by plant breeders. This review presents an overview of the Australian cotton germplasm resources and discusses the appropriateness of a core collection for cotton breeding programs.
ISSN:1664-462X
1664-462X
DOI:10.3389/fpls.2022.895155